

ETSI TR 103 570 V1.1.1 (2017-10)

CYBER;
Quantum-Safe Key Exchanges

TECHNICAL REPORT

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 2

Reference
DTR/CYBER-QSC-007

Keywords
algorithm, confidentiality, quantum cryptography,

security

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2017.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 3

Contents

Intellectual Property Rights .. 6

Foreword ... 6

Modal verbs terminology .. 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 7

3 Abbreviations ... 13

4 Quantum-safe key exchanges ... 13

4.1 Introduction .. 13

4.2 Use cases .. 14

4.2.1 General comments .. 14

4.2.2 Network security ... 14

4.2.3 Internet of Things ... 14

4.3 Candidate primitives... 14

5 Implementation considerations ... 15

5.1 Introduction .. 15

5.2 Active security .. 15

5.2.1 Invalid key attacks .. 15

5.2.2 Key validation ... 15

5.2.3 Performance impact .. 16

5.3 Side-channel protection .. 16

5.3.1 Side-channel vulnerabilities .. 16

5.3.2 Side-channel mitigations ... 16

5.3.3 Performance impact .. 16

6 Learning with Errors .. 17

6.1 Introduction .. 17

6.2 LWE key exchange .. 17

6.2.1 Overview .. 17

6.2.2 Public parameters .. 18

6.2.3 Key generation .. 18

6.2.4 Key extraction ... 18

6.2.5 Reconciliation ... 19

6.3 Ring-LWE key exchange ... 19

6.3.1 Overview .. 19

6.3.2 Public parameters .. 20

6.3.3 Key generation .. 21

6.3.4 Key extraction ... 21

6.3.5 Reconciliation ... 21

6.4 Implementation considerations ... 22

6.4.1 Active security .. 22

6.4.2 Side-channel protection .. 22

6.5 Parameter selection... 22

6.5.1 LWE proposed parameters .. 22

6.5.2 Ring-LWE proposed parameters ... 23

6.5.3 Security estimates ... 23

6.6 Performance ... 23

6.6.1 Performance on a 64-bit processor ... 23

6.6.2 Performance on a 32-bit embedded processor .. 24

6.6.3 Performance on 32-bit microcontrollers ... 24

6.7 Summary .. 25

7 Supersingular isogenies .. 25

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 4

7.1 Introduction .. 25

7.2 SIDH key exchange .. 25

7.2.1 Overview .. 25

7.2.2 Public parameters .. 26

7.2.3 Key generation .. 26

7.2.4 Key exchange .. 27

7.3 Implementation considerations ... 27

7.3.1 Static key exchanges ... 27

7.3.2 Side-channel protection .. 28

7.4 Parameter selection... 28

7.4.1 Proposed parameters ... 28

7.4.2 Security estimates ... 28

7.5 Performance ... 28

7.5.1 Performance on a 64-bit desktop processor .. 28

7.5.2 Performance on a 64-bit embedded processor .. 29

7.5.3 Performance on a 32-bit embedded processor .. 29

7.6 Summary .. 29

8 Key exchanges from key transport mechanisms .. 29

8.1 General construction... 29

8.2 Niederreiter... 30

8.2.1 Introduction... 30

8.2.2 Niederreiter key exchange .. 30

8.2.2.1 Overview ... 30

8.2.2.2 Public parameters .. 31

8.2.2.3 Key generation .. 31

8.2.2.4 Decryption ... 32

8.2.3 Implementation considerations ... 32

8.2.3.1 Active attacks .. 32

8.2.3.2 Side-channel attacks .. 32

8.2.4 Parameter selection ... 32

8.2.4.1 Proposed parameters ... 32

8.2.4.2 Security estimates ... 33

8.2.5 Performance .. 33

8.2.5.1 Performance on a 64-bit server processor ... 33

8.2.5.2 Performance on a 64-bit desktop processor .. 33

8.2.5.3 Performance on an 8-bit microcontroller .. 33

8.2.6 Summary ... 34

8.3 NTRU ... 34

8.3.1 Introduction... 34

8.3.2 NTRU key exchange ... 34

8.3.2.1 Overview ... 34

8.3.2.2 Public parameters .. 35

8.3.2.3 Decryption ... 35

8.3.3 Implementation considerations ... 35

8.3.3.1 Static key exchange ... 35

8.3.3.2 Side channel attacks .. 35

8.3.4 Parameter selection ... 36

8.3.4.1 Proposed parameters ... 36

8.3.4.2 Security estimates ... 36

8.3.5 Performance .. 36

8.3.5.1 Performance on a 64-bit desktop processor .. 36

8.3.5.2 Performance on a 32-bit embedded processor... 36

8.3.5.3 Performance on a 32-bit microcontroller .. 37

8.3.6 Summary ... 37

9 Conclusions .. 37

Annex A: LWE design and security considerations .. 39

A.1 LWE and Ring-LWE variants .. 39

A.1.1 Rings .. 39

A.1.2 Distributions ... 39

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 5

A.1.2.1 Discrete Gaussians .. 39

A.1.2.2 Approximate Gaussians .. 39

A.1.2.3 Small distributions .. 40

A.1.2.4 Learning with Rounding ... 40

A.1.3 Varying A ... 40

A.1.4 Reconciliation mechanisms .. 41

A.1.5 Key transport .. 41

A.2 Security considerations... 42

A.2.1 Provable security .. 42

A.2.2 Passive security .. 42

A.2.3 Active security .. 43

Annex B: SIDH background and security considerations .. 44

B.1 Mathematical background .. 44

B.1.1 Isogenies ... 44

B.1.2 Parameter generation .. 44

B.1.3 Public key compression .. 45

B.2 Security... 45

B.2.1 Provable security .. 45

B.2.2 Passive security .. 46

B.2.3 Active security .. 46

Annex C: Open Quantum-Safe benchmarks ... 48

C.1 Open Quantum-Safe ... 48

C.2 Benchmarks .. 48

C.2.1 Performance on a 64-bit desktop processor .. 48

C.2.2 Performance on a 64-bit laptop processor .. 49

C.2.3 Performance on a 32-bit embedded processor .. 49

C.3 Discussion .. 49

History .. 50

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 6

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Cyber Security (CYBER).

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 7

1 Scope

The present document compares a selection of proposals for quantum-safe key exchanges taken from the academic
literature. In particular, it includes key exchanges based on the Learning with Errors (LWE), Ring-LWE and
Supersingular Isogeny Diffie-Hellman (SIDH) problems, as well as key exchanges constructed from the Niederreiter
and NTRU key transport schemes.

The present document gives an overview of each key exchange, lists proposed parameters and gives software
performance estimates on a range of processors. It also discusses various security and implementation considerations
such as active attacks and side-channel vulnerabilities.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

user with regard to a particular subject area.

[i.1] ETSI QKD GS 002: "Quantum Key Distribution (QKD); Use cases".

[i.2] ETSI GR QSC 001: "Quantum-Safe Cryptography (QSC); Quantum-safe algorithmic framework".

[i.3] IETF draft-ietf-tls-tls13-19: "The Transport Layer Security (TLS) protocol version 1.3",
10 March 2017.

[i.4] IETF RFC 7296: "Internet Key Exchange protocol version 2 (IKEv2)", October 2014.

[i.5] ETSI GR QSC 003: "Quantum Safe Cryptography; Case Studies and Deployment Scenarios".

[i.6] I. Biehl, B. Meyer and V. Müller: "Differential fault attacks on elliptic curve cryptosystems" in
CRYPTO, 2000.

[i.7] E. Fujisaki and T. Okamoto: "Secure integration of asymmetric and symmetric encryption
schemes" in CRYPTO, 1999.

[i.8] E. E. Targhi and D. Unruh: "Post-quantum security of the Fujisaki-Okamoto and OAEP
transforms" in TCC, 2016.

[i.9] P. Kocher: "Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems"
in CRYPTO, 1996.

[i.10] P. Kocher, J. Jaffe and B. Jun: "Differential power analysis" in CRYPTO, 1999.

[i.11] D. Brumley and D. Boneh: "Remote timing attacks are practical" Computer Networks, vol. 48,
no. 5, pp. 701-716, 2005.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 8

[i.12] J. Großschädl, E. Oswald, D. Page and M. Tunstall: "Side-channel analysis of cryptographic
software via early-terminating multiplications" in ISIC, 2009.

[i.13] S. Mangard, E. Oswald and T. Popp: "Power analysis attacks: Revealing the secrets of smart
cards", New York: Springer Science & Business Media, 2008.

[i.14] J. D. Golić and C. Tymen: "Multiplicative masking and power analysis of AES" in CHES, 2002.

[i.15] M. Rivain and E. Prouff: "Provably secure higher-order masking of AES" in CHES, 2010.

[i.16] M. Ajtai: "Generating hard instances of lattice problems" in STOC, 1996.

[i.17] M. Ajtai and C. Dwork: "A public-key cryptosystem with worst-case/average-case equivalence" in
STOC, 1997.

[i.18] J. Hoffstein, J. Pipher and J. H. Silverman: "NTRU: A ring-based public key cryptosystem" in
ANTS III, 1998.

[i.19] O. Regev: "On lattices, learning with errors, random linear codes, and cryptography" in STOC,
2005.

[i.20] D. Stehlé, R. Steinfeld, K. Tanaka and K. Xagawa: "Efficient public key encryption based on ideal
lattices" in ASIACRYPT, 2009.

[i.21] V. Lyubashevsky, C. Peikert and O. Regev: "On ideal lattices and learning with errors over rings",
Journal of the ACM (JACM), vol. 60, no. 6, p. 43, 2013.

[i.22] C. Peikert: "Some recent progress in lattice-based cryptography" in TCC, 2009.

[i.23] J. Ding, X. Xie and X. Lin: "A simple provably secure key exchange scheme based on the
Learning with Errors problem", IACR ePrint Archive 2012/688, 2012.

[i.24] C. Peikert: "Lattice cryptography for the internet" in PQC, 2014.

[i.25] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan and D.
Stebila: "Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE", IACR
ePrint Archive 2016/659, 2016.

[i.26] S. Battacharya, O. Garcia-Morchon, R. Rietman and L. Tolhuizen: "spKEX: An optimized
lattice-based key exchange", IACR ePrint Archive 2017/709, 2017.

[i.27] E. Alkim, L. Ducas, T. Pöppelmann and P. Schwabe: "Post-quantum key exchange - A new hope"
in USENIX Security, 2016.

[i.28] J. Bos, C. Costello, M. Naehrig and D. Stebila: "Post-quantum key exchange for the TLS protocol
from the Ring Learning with Errors problem" in Security and Privacy, 2015.

[i.29] E. Alkim, P. Jukabeit and P. Schwabe: "A new hope on ARM Cortex-M", IACR ePrint Archive
2016/758, 2016.

[i.30] S. Fluhrer: "Cryptanalysis of Ring-LWE based key exchange with key share reuse", IACR ePrint
Archive 2016/085, 2016.

[i.31] J. Ding, S. Alsayigh, R. V. Saraswathy and S. Fluhrer: "Leakage of signal function with reused
keys in RLWE key exchange", IACR ePrint Archive 2016/1176, 2016.

[i.32] P. Hodgers, F. Regazzoni, R. Gilmore, C. Moore and T. Ode: "State-of-the-art in physical
side-channel attacks and resistant technologies", SAFECrypto D7.1, 2016.

[i.33] L. Groot Bruinderink, A. Hülsing, T. Lange and Y. Yaro: "Flush, Gauss and reload - A cache
attack on the BLISS lattice-based signature scheme" in CHES, 2016. .

[i.34] T. Espitau, P. A. Fouque, B. Gerard and M. Tibouch: "Side-channel attacks on BLISS
lattice-based signatures", IACR ePrint Archive 2017/505, 2017.

[i.35] R. Primas, P. P. and S. Mangar: "Single-trace side-channel attacks on masked lattice-based
encryption", IACR ePrint Archive 2017/594, 2017.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 9

[i.36] S. Roy, O. Reparaz, F. Vercauteren and I. Verbauwhed: "Compact and side channel secure discrete
Gaussian sampling", IACR ePrint Archive 2014/591, 2014.

[i.37] O. Reparaz, S. Roy, F. Vercauteren and I. Verbauwhede: "A masked Ring-LWE implementation"
in CHES, 2015.

[i.38] T. Oder, T. Schneider, T. Pöppelmann and T. Güneys: "Practical CCA2-secure and masked
Ring-LWE implementation", IACR ePrint Archive 2016/1109, 2016.

[i.39] V. Sing: "A practical key exchange for the internet using lattice cryptography", IACR ePrint
Archive 138/2015, 2015.

[i.40] V. Singh and A. Chopr: "Even more practical key exchanges for the internet using lattice
cryptography", IACR ePrint Archive 2015/1120, 2015.

[i.41] M. R. Albrecht, R. Player and S. Scot: "On the concrete hardness of learning with errors", Journal
of Mathematical Cryptology, vol. 9, no. 3, pp. 169-203, 2015.

[i.42] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler and D. Stehlé: "CRYSTALS -
Dilithium: Digital signatures from module lattices", IACR ePrint Archive 2017/634, 2017.

[i.43] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck and D. Stehlé:
"CRYSTALS - Kyber: A CCA-secure module-lattice-based KEM", IACR ePrint Archive
2017/634, 2017.

[i.44] A. Langlois and D. Stehlé: "Worst-case to average-case reductions for module lattices", Designs,
Codes and Cryptography, vol. 75, no. 3, pp. 565-599, 2015.

[i.45] D. Jao and L. De Feo: "Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies" in PQC, 2011.

[i.46] L. De Feo, D. Jao and J. Plût: "Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies", Journal of Mathematical Cryptography, vol. 8, no. 3, pp. 209-247, 2014.

[i.47] C. Costello, P. Longa and P. Naehrig: "Efficient algorithms for supersingular isogeny Diffie-
Hellman" in CRYPTO, 2016.

[i.48] S. D. Galbraith, C. Petit, B. Shani and Y. B. Ti: "On the security of supersingular isogeny
cryptosystems" in ASIACRYPT, 2016.

[i.49] S. D. Galbraith and F. Vercauteren: "Computational problems in supersingular elliptic curve
isogenies", IACR ePrint Archive 2017/774, 2017.

[i.50] D. Kirkwood, B. Lackey, J. McVey, M. Motley, J. Solinas and D. Tuller: "Failure is not an option:
Standardisation issues for post-quantum key agreement" in NIST Workshop on Cybersecurity in a
Post-Quantum World, 2015.

[i.51] Y. B. Ti: "Fault attacks on supersingular isogeny cryptosystems" in PQC, 2017.

[i.52] A. Gélin and B. Wesolowski: "Loop-abort faults on supersingular isogeny cryptosystems" in PQC,
2017.

[i.53] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes and D. Urbanik: "Efficient compression of
SIDH public keys" in EUROCRYPT, 2017.

[i.54] A. Jalali, R. Azarderakhsh, M. Mozaffari-Kermani and D. Jao: "Supersingular isogeny
Diffie-Hellman key exchange on 64-bit ARM", IEEE Transactions on Dependable and Secure
Computing, vol. (to appear), 2017.

[i.55] B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao and M. Mozaffari-Kermani: "NEON-SIDH: Efficient
implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM" in
CANS, 2016.

[i.56] H. Niederreiter: "Knapsack-type cryptosystems and algebraic coding theory", Problems of Control
and Information Theory, vol. 15, no. 2, pp. 159-166, 1986.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 10

[i.57] R. McEliece: "A public key cryptosystem based on algebraic coding theory", DSN progress
report 42.44, 1978.

[i.58] V. Shoup: "Fast construction of irreducible polynomials over finite fields", Journal of Symbolic
Computation, vol. 17, no. 5, pp. 371-391, 1994.

[i.59] N. Patterson: "The algebraic decoding of Goppa codes", IEEE Transactions on Information
Theory, vol. 21, no. 2, pp. 203-207, 1975.

[i.60] E. R. Berlekamp: "Algebraic coding theory", New York: McGraw-Hill, 1968.

[i.61] K. Kobara and H. Imai: "Semantically secure McEliece public-key cryptosystems - conversions
for McEliece PKC" in PKC, 2001.

[i.62] E. Persichetti: "Secure and anonymous hybrid encryption from coding theory" in PQC, 2013.

[i.63] Q. Guo, T. Johansson and P. Stankovski: "A key recovery attack on MDPC with CCA security
using decoding errors" in ASIACRYPT, 2016.

[i.64] S. Heyse, A. Moradi and C. Paar: "Practical power analysis attakcs on software implementations
of McEliece" in PQC, 2010.

[i.65] R. Avanzi, S. Hoerder, D. Page and M. Tunstall: "Side-channel attacks on the McEliece and
Niederreiter public-key cryptosystems", Journal of Cryptographic Engineering, vol. 1, no. 4,
pp. 271-281, 2011.

[i.66] D. J. Bernstein, T. Chou and P. Schwabe: "McBits: Fast constant-time code-based cryptography"
in CHES, 2013.

[i.67] M. Georgieva and F. de Portzamparc: "Toward secure implementation of McEliece decryption" in
COSADE, 2015.

[i.68] F. Strenzke: "Timing attacks against the synrome inversion in code-based cryptosystems" in PQC,
2013.

[i.69] PQCrypto: "Initial recommendations of long-term secure post-quantum systems", 2015.

NOTE: Available at http://pqcrypto.eu.org/.

[i.70] D. J. Bernstein, T. Lange and C. Peters: "Attacking and defending the McEliece cryptosystem" in
PQC, 2008.

[i.71] S. H. S. de Vries: "Achieving 128-bit security against quantum attacks in OpenVPN", MSc Thesis,
University of Twente, 2016.

[i.72] D. J. Bernstein: "List decoding for binary Goppa codes" in International Conference on Coding
and Cryptology, 2011.

[i.73] D. J. Bernstein: "Grover vs McEliece" in PQC, 2010.

[i.74] D. J. Bernstein and T. Lange: "eBACS: ECRYPT benchmarking of cryptographic systems".

NOTE: Available at https://bench.cr.yp.to.

[i.75] B. Biswas and N. Sendrier: "McEliece cryptosystem implementation: Theory and practice" in
PQC, 2008.

[i.76] T. Chou: "McBits revisited" IACR ePrint Archive 2017/793, 2017.

[i.77] S. Heyse: "Low-reiter: Niederreiter encryption scheme for embedded microcontrollers" in PQC,
2010.

[i.78] W. Whyte: "EEES#1: Implementation aspects of NTRUEncrypt, Version 3.1", 2015.

NOTE: Available at https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-v3.1.pdf.

http://pqcrypto.eu.org/
https://bench.cr.yp.to/
https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-v3.1.pdf

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 11

[i.79] J. Hoffstein; J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte and Z. Zhang: "Choosing
parameters for NTRUEncrypt" in CT-RSA, 2017.

[i.80] É. Jaulmes and A. Joux: "A chosen-ciphertext attack against NTRU" in CRYPTO, 2000.

[i.81] N. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. Proos, J. Silverman and A. Singer: "The
impact of decryption failures on the security of NTRU encryption" in CRYPTO, 2003.

[i.82] N. Gama and P. Q. Nguyen: "New chosen-ciphertext attacks on NTRU" in PKC, 2007.

[i.83] A. Hülsing, J. Rijnveld, J. Schanck and P. Schwabe: "High-speed key encapsulation from NTRU",
IACR ePrint Archive 2017/667, 2017.

[i.84] N. Howgrave-Graham, J. Silverman, A. Singer and W. Whyte: "NAEP: Provable security in the
presence of decryption failures", IACR ePrint Archive 2003/172, 2003.

[i.85] M. Stam: "A key encapsulation mechanism for NTRU" in Cryptography and Coding, 2005.

[i.86] J. H. Silverman and W. Whyte: "Timing attacks on NTRUEncrypt via variation in the number of
hash calls" in CT-RSA, 2007.

[i.87] A. Atici, L. Batina, B. Grierlichs and I. Verbauwhede: "Power analysis on NTRU implementations
for RFIDs: First results" in RFIDSec, 2008.

[i.88] A. Wang, X. Zheng and Z. Wang: "Power analysis attacks and countermeasures on NTRU-based
wireless body area networks", KSII Transactions on Internet and Information Systems, vol. 7,
no. 5, pp. 1094-1107, 2013.

[i.89] X. Zheng, A. Wang and W. Wei: "First-order collision attack on protected NTRU cryptosystem",
Microprocessors and Microsystems, vol. 37, pp. 601-609, 2013.

[i.90] N. Howgrave-Graham: "A hybrid lattice-reduction and meet-in-the-middle attack against NTRU"
in CRYPTO, 2007.

[i.91] O. M. Guillen, T. Pöppelmann, J. M. B. Mera, E. F. Bongenaar, G. Sigl and J. Sepulveda:
"Towards post-quantum security for IoT endpoints with NTRU" in DATE, 2017.

[i.92] J. H. Cheon, J. Jeong and C. Lee: "An algorithm for NTRU problems and cryptanalysis of the
GGH multilinear map without a low-level encoding of zero" in ANTS-XII, 2016.

[i.93] M. Albrecht, S. Bai and L. Ducas: "A subfield lattice attack on overstretched NTRU assumptions"
in CRYPTO, 2016.

[i.94] D. J. Bernstein, C. Chuengsatiansup, T. Lange and C. van Vredendaal: "NTRU Prime", IACR
ePrint Archive 2016/461, 2016.

[i.95] P. Kirchner and P.-A. Fouque: "Comparison between subfield and straightforward attacks on
NTRU", IACR ePrint Archive 2016/717, 2016.

[i.96] B. Applebaum, D. Cash, C. Peikert and A. Sahai: "Fast cryptographic primitives and circular-
secure encryption based on hard learning problems" in CRYPTO, 2009.

[i.97] L. Ducas and A. Durmus: "Ring-LWE in polynomial rings" in PKC, 2012.

[i.98] C. Peikert: "How (not) to instantiate Ring-LWE" in SCN, 2016.

[i.99] J. H. Cheon, K. Han, J. Kim, C. Lee and Y. Son: "A practical post-quantum public-key
cryptosystem based on spLWE" in ICISC, 2016.

[i.100] L. Ducas, V. Lyubashevsky and T. Prest: "Efficient identity-based encryption over NTRU lattices"
in ASIACRYPT, 2014.

[i.101] J. Fan and F. Vercauteren: "Somewhat practical fully homomorphic encryption", IACR ePrint
Archive 2012/144, 2012.

[i.102] D. Micciancio and C. Peikert: "Hardness of SIS and LWE with small parameters" in CRYPTO,
2013.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 12

[i.103] J. Buchmann, E. Gopfert, R. Player and T. Wunderer: "On the hardness of LWE with binary error:
Revisiting the hybrid lattice-reduction and meet-in-the-middle attack" in AFRICACRYPT, 2016.

[i.104] M. Albrecht: "On dual lattice attacks against small-secret LWE and parameter choices in HElib
and SEAL" in EUROCRYPT, 2017.

[i.105] A. Banerjee, C. Peikert and A. Rosen: "Pseudorandom functions and lattices" in EUROCRYPT,
2012.

[i.106] J. H. Cheon, D. Kim, J. Lee and Y. Song: "Lizard: Cut of the tail! Practical post-quantum public-
key encryption from LWE and LWR", IACR ePrint Archive 2016/1126, 2016.

[i.107] T. Pöppelmann and T. Güneysu: "Towards practical lattice-based public-key encryption on
reconfigurable hardware" in SAC, 2013.

[i.108] L. Tolhuizen, R. Rietman and O. Garcia-Morchon: "Improved key-reconciliations method" IACR
ePrint Archive 2017/295, 2017.

[i.109] Z. Brakerski, A. Langlois, C. Peikert, O. Regev and D. Stehlé: "Classical hardness of learning with
errors" in STOC, 2013.

[i.110] S. Chatterjee, N. Koblitz, A. Menezes and P. Sarkar: "Another look at tightness II: Practical issues
in cryptography", IACR ePrint Archive 2016/360, 2016.

[i.111] K. Eisenträger, S. Hallgren and K. E. Lauter: "Weak instances of PLWE" in SAC, 2014.

[i.112] Y. Elias, K. E. Lauter, E. Ozman and K. E. Stange: "Provably weak instances of Ring-LWE" in
CRYPTO, 2015.

[i.113] W. Castryck, I. Iliashenko and F. Vercauteren: "Provably weak instances of Ring-LWE revisited"
in EUROCRYPT, 2016.

[i.114] H. Chen, K. E. Lauter and K. E. Stange: "Vulnerable Galois RLWE families and improved
attacks", IACR ePrint Archive 2016/193, 2016.

[i.115] R. Lindner and C. Peikert: "Better key sizes (and attacks) for LWE-based encryption" in CT-RSA,
2011.

[i.116] A. Blum, A. Kalai and H. Wasserman: "Noise-tolerant learning, the parity problem, and the
statistical query model", Journal of the ACM, vol. 50, no. 4, pp. 506-519, 2003.

[i.117] M. Abe, R. Gennaro, K. Kurosawa and V. Shoup: "Tag-KEM/DEM: A new framework for hybrid
encryption and a new analysis of Kurosawa-Desmedt KEM" in EUROCRYPT, 2005.

[i.118] J. Silverman, The arithmetic of elliptic curves, New York: Springer-Verlag, 1992.

[i.119] R. Bröker: "Constructing supersingular curves", J. Comb. Number Theory, vol. 1, no. 3,
pp. 269-273, 2009.

[i.120] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel and C. Leonardi: "Key compression for
isogeny-based cryptosystems" in AsiaPKC, 2016.

[i.121] A. Childs, D. Jao and V. Soukharev: "Constructing elliptic curve isogenies in quantum
subexponential time", Journal of Mathematical Cryptology, vol. 8, no. 1, pp. 1-29, 2014.

[i.122] J.-F. Biasse, D. Jao and A. Sankar: "A quantum algorithm for computing isogenies between
supersingular elliptic curves" in INDOCRYPT, 2014.

[i.123] C. Delfs and S. D. Galbraith: "Computing isogenies between supersingular elliptic curves over Fp"
in Designs, Codes and Cryptography, 2014.

[i.124] C. Petit: "Faster algorithms for isogeny problems using torsion point images", IACR ePrint
Archive 2017/571, 2017.

[i.125] D. Stebila and M. Mosca: "Post-quantum key exchange for the internet and the Open
Quantum-Safe project", IACR ePrint Archive 2016/1017, 2016.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 13

[i.126] P. Longa and M. Naehrig: "Speeding up the number theoretic transform for faster ideal
lattice-based cryptography" in CANS, 2016.

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AES-NI AES New Instructions
AMD Advanced Micro Devices
ARM Advanced RISC machine
AVX Advanced Vector Extensions
BKZ Block Korkine-Zolotarev algorithm
DH Diffie-Hellman
DTLS Datagram Transport Layer Security
ECDH Elliptic Curve Diffie-Hellman
GF Galois Field
IKE Internet Key Exchange
IoT Internet of Things
KDF Key Derivation Function
KEM Key Encapsulation Mechanism
LWE Learning With Errors
LWR Learning With Rounding
NTT Number-Theoretic Transform
QKD Quantum Key Distribution
QSC Quantum-Safe Cryptography
RSA Rivest-Shamir-Adleman protocol
SIDH Supersingular Isogeny Diffie-Hellman
SSH Secure Shell
TLS Transport Layer Security
VoIP Voice over Internet Protocol
VPN Virtual Private Network

4 Quantum-safe key exchanges

4.1 Introduction
Key establishment is a public-key cryptographic primitive which allows two parties to set up a shared secret key. In a
key exchange, the shared secret key is securely derived from information contributed by both parties; for example, by
exchanging public keys with each other. The standard examples of a key exchange are Diffie-Hellman (DH) and
Elliptic Curve Diffie-Hellman (ECDH). In a key transport mechanism one party generates the secret key and securely
shares it with the second party; for example, by sending it encrypted under the second party's public key. The standard
example of a key transport mechanism is RSA encryption.

DH, ECDH and RSA will all be made insecure by the development of large-scale fault-tolerant quantum computing.
The present document discusses proposals in the academic literature for quantum-safe key exchange primitives that
could be used directly to replace DH and ECDH. The present document also includes examples of key exchanges
constructed from key transport mechanisms.

NOTE 1: Quantum-safe key transport mechanisms that could be used to replace RSA will be considered in a
separate document.

NOTE 2: The present document only considers algorithmic key exchange mechanisms. Other mechanisms, based
on Quantum Key Distribution (QKD), are considered in ETSI QKD GS 002 [i.1].

Key exchanges can either use short-term ephemeral keys or long-term static keys.

• In ephemeral key exchanges both parties generate new short-term public keys that are only used in a single
exchange.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 14

• In static key exchanges one party generates a new short-term public key that is only used in a single exchange,
but the other party has a long-term public key that can be used in many exchanges.

Ephemeral key exchanges require on-line interaction between the two parties and are often used to provide perfect
forward secrecy. Static key exchanges are more appropriate when on-line interaction is not possible.

The present document considers some representative examples of quantum-safe key exchanges, but does not attempt to
be exhaustive. More discussion of quantum-safe primitives can be found in ETSI GR QSC 001 [i.2].

4.2 Use cases

4.2.1 General comments

Most commercial systems will need a general-purpose quantum-safe key exchange that has good security and efficiency
properties, and which can be integrated into existing protocols with minimal changes. IoT networks will have more
severe resource constraints, but for use cases that involve low-value ephemeral data a lower security solution might be
acceptable.

4.2.2 Network security

Network security protocols such as Transport Layer Security (TLS), Datagram TLS (DTLS), Internet Key Exchange
(IKE) and Secure Shell (SSH) are ubiquitous. They are used to protect a range of different internet applications
including web browsing, instant messaging, Voice over Internet Protocols (VoIP), Virtual Private Networks (VPNs) and
remote access. These protocols typically provide confidentiality by performing a key exchange during an initial
handshake or setup phase. Many modern protocols such as TLS 1.3 [i.3] or IKEv2 [i.4] also require ephemeral key
exchanges for perfect forward security.

The performance of the quantum-safe key exchange is an important consideration. Protocol limitations or practical
issues such as packet fragmentation also mean that it can be more difficult to use key exchanges that have large public
keys. More discussion of the practical issues around the integration and deployment of quantum-safe cryptography into
real-world systems can be found in ETSI GR QSC 003 [i.5].

4.2.3 Internet of Things

The Internet of Things (IoT) is a term which covers a wide range of different locally-networked or internet-connected
objects. Applications include smart home devices, wearable technology, intelligent transport systems, sensor networks
and industrial control systems. A common characteristic of IoT devices is that they have limited power, memory,
bandwidth, or computational resources. This means that the security of IoT networks has often relied on pre-shared
symmetric keys, but public-key primitives such as ECDH are increasingly being used where resource constraints allow
this.

Quantum-safe key exchanges that have small public keys will be needed for IoT applications with limited bandwidth.
Similarly, devices with limited power or computational resources will require key exchanges that have efficient key
generation. However, it is likely that constrained environments will not be able to support perfect forward secrecy or
algorithm negotiation.

4.3 Candidate primitives
The only key exchanges described in ETSI GR QSC 001 [i.2] are either based on lattices or on supersingular isogenies.
The present document therefore considers the following key exchanges:

• Learning with Errors (LWE) key exchange (clause 6.2);

• Ring-LWE key exchange (clause 6.3); and

• Supersingular Isogeny Diffie-Hellman (SIDH) key exchange (clause 7).

Although not widely used, it is also possible to construct a key exchange from a key transport mechanism. The key
transport mechanisms described in ETSI GR QSC 001 [i.2] are based on lattices, codes and multivariate systems.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 15

Consequently, the present document also includes examples of key exchanges based on the following key transport
mechanisms:

• Niederreiter key transport (clause 8.2); and

• NTRU key transport (clause 8.3).

5 Implementation considerations

5.1 Introduction
The two most important considerations for deploying quantum-safe key exchanges are the size of the parameters and
the performance of the algorithms at an appropriate security level. However, a scheme or implementation that is secure
when used for purely ephemeral key exchanges can be insecure when used for static exchanges due to active attacks or
side-channel vulnerabilities.

5.2 Active security

5.2.1 Invalid key attacks

Key exchanges can be vulnerable to active attacks where one party uses an invalid public key [i.6], or provokes a failure
in the protocol, to learn information about the other party's private key. This is not usually a concern in an ephemeral
key exchange since the private key will only be used for that particular exchange and a new one will be generated for
the next exchange. However, if one of the public keys is static then it is possible to use these techniques to recover the
full static private key over a number of key exchanges. One solution to this problem is to modify the key exchange
protocol so that it includes a key validation step.

5.2.2 Key validation

In DH and ECDH the public key can be directly validated by checking that it belongs to the correct subgroup. For some
quantum-safe primitives this is not possible as valid public keys are indistinguishable from invalid ones. Instead, it is
necessary to validate keys indirectly using techniques such as the Fujisaki-Okamoto transform [i.7]. The responder
sends the initiator their ephemeral private key encrypted under the shared secret key that the responder derived from the
key exchange. The initiator can then attempt to decrypt the responder's ephemeral private key and use it to reconstruct
the responder's side of the exchange. If the reconstructed exchange does not match the original exchange exactly then
the initiator knows that either the original key exchange failed or the responder did not perform their side of the
exchange honestly.

NOTE 1: After a key exchange involving the Fujisaki-Okamoto transform the responder will have revealed their
private key to the initiator. This means that it is important for the responder to generate a new private key
for each key exchange.

NOTE 2: The original Fujisaki-Okamoto transform [i.7] has a proof of security against classical adversaries, but
this does not hold for quantum adversaries. It is necessary to modify the transform slightly [i.8] to provide
a security proof in this case.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 16

5.2.3 Performance impact

If the ephemeral private keys are deterministically generated from a seed then the communication overhead from using
the Fujisaki-Okamoto transform is small since it only adds an encryption of the seed to the information that the
responder sends to the initiator. Similarly, the Fujisaki-Okamoto transform does not significantly increase the cost of
computing the responder's side of exchange since the only addition is the encryption of the seed. However, the initiator
recreates the responder's side of the exchange which almost doubles the total computational cost for the initiator.

NOTE: Ephemeral keys are only intended to be used once, but they are often cached and used in a number of key
exchanges over a relatively short time period to improve performance on servers with high loads. Cached
ephemeral keys can be vulnerable to the same active attacks as static keys. In this case the performance
overhead from using the Fujisaki-Okamoto transform to mitigate these attacks is more than the cost of
generating a fresh ephemeral key for each exchange.

5.3 Side-channel protection

5.3.1 Side-channel vulnerabilities

Side-channel attacks use secret information obtained from the physical implementation of a cryptosystem to recover the
private key rather than attacking the underlying algorithms. These attacks can either be passive or active. Passive
attacks are performed by observing and analysing physical quantities, such as execution time [i.9], power consumption
[i.10] or electromagnetic emission. In active attacks, the adversary manipulates the device by modifying its inputs, its
environment or both, with the goal being to induce abnormal behaviour in the device and exploiting it to perform the
attack. Although many attacks require close physical proximity or access to a device, it has been shown that timing
attacks can also be carried out remotely across a network [i.11]. Security against these various forms of side-channel
attack is therefore a vital consideration in the design and implementation of a physical cryptosystem.

5.3.2 Side-channel mitigations

Timing attacks include a range of techniques from simple power analysis to cache attacks, which exploit differences in
execution time due to branching based on private data in order to extract some information. These attacks can generally
be blocked by ensuring a constant execution time. However, it can be challenging for certain target platforms [i.12], or
can be difficult to achieve due to compiler optimizations. Power analysis countermeasures aim to make the power
consumption independent from the secret data, using either hiding or masking techniques [i.13]. Hiding looks to shuffle
the order of operations, or increasing the amount of noise so that an adversary does not know where the private key
dependent leakage occurs. Masking looks to break the link between the secret value being operated on and the physical
power consumption through the addition of randomness [i.14].

5.3.3 Performance impact

There is a trade-off associated to side-channel countermeasures in terms of achieved security level versus performance,
with the implementation of countermeasures potentially costly in terms speed or memory. The performance cost of
constant time operations varies depending on the underlying algorithm, but implementation techniques mean it does not
need to be prohibitive. Similarly, the addition of noise can be relatively low-cost in terms of performance, although it
requires additional energy which might be an issue for embedded devices and is not secure against attacks. On the other
hand, masking is provably secure [i.15] but can incur performance penalties of an order of magnitude or more.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 17

6 Learning with Errors

6.1 Introduction
Cryptography based on the hardness of lattice problems [i.16] and [i.17] has been around for over twenty years and
there have been schemes using structured lattices [i.18] for almost as long. Much of modern lattice-based cryptography,
and most modern lattice-based encryption schemes, relies on the security of the LWE problem [i.19] or its structured
lattice version, Ring-LWE [i.20] and [i.21]. Although the first LWE and Ring-LWE schemes can clearly be viewed as
analogous to ElGamal encryption and the possibility of a Diffie-Hellman style key exchange was mentioned in [i.22],
concrete proposals for key exchanges are more recent [i.23] and [i.24].

Clause 6.2 gives a description of a LWE key exchange and clause 6.3 gives a description of a Ring-LWE key exchange.
These are based on the general scheme presented in [i.24] and variations of the basic key exchanges are described in
clause A.1. Clause 6.4 discusses some implementation considerations, clause 6.5 lists proposed parameters, and
clause 6.6 gives performance estimates. Further discussion of security considerations can be found in clause A.2.
Performance comparisons with other key exchanges can be found in annex C.

6.2 LWE key exchange

6.2.1 Overview

The LWE key exchange follows the same general format as a Diffie-Hellman key exchange: each party generates a key
pair and sends their public key to the other party. However, as small noise terms are added to the public keys, the
"shared values" that each party computes will differ by a small amount. Consequently, one party sends the other party
an additional check field so that they are both able to compute the same secret key with reasonable probability. This
means that the LWE key exchange is not symmetric as the two parties involved behave differently. It will be clearer to
describe the key exchange in terms of an initiator, who starts the exchange, and a responder.

The LWE key exchange uses a public matrix �. This can be a fixed system parameter chosen by a trusted party during
the setup of the scheme as in [i.24], freshly generated by the initiator for each key exchange as in [i.25], or agreed upon
in some other manner providing a trade-off between performance and security as in [i.26]. Further discussion can be
found in clause A.1.3.

Figure 1: LWE key exchange with public matrix �

The LWE key exchange proceeds as follows and is illustrated in figure 1:

1) The initiator generates a private key �� and private noise term ��, both of which are matrices with small
entries. The initiator's corresponding public key �� = � ∙ �� + �� is computed from their private key ��, private
noise term �� and the public matrix �.	The initiator sends their public key �� to the responder.

Initiator

Generate small private key ��
Generate small private noise ��
Compute public key �� = � ∙ �� + ��

Compute value	�� = �� ∙ ��
Extract secret key � = Rec(�� ,�)

��

�� ,�

Responder

Generate small private key ��
Generate small private noise ��
Compute public key �� = �� ∙ � + ��

Generate small private noise �′�
Compute value �� = �� ∙ �� + �′�
Compute check field � = Check(��)

Extract secret key � = Extract(��)

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 18

2) The responder generates a private key �� and private noise term ��, both of which are matrices with small
entries. The responder's corresponding public key �� = �� ∙ � + �� is computed from their private key ��,
private noise term �� and the public matrix �.

3) The responder generates a second noise term �′�, which is a matrix with small entries, and forms the
intermediate value �� = �� ∙ �� + �′� from their private key ��, the initiator's public key �� , and their second
noise term �′�. The responder computes a check field � from �� and sends their public key �� and check field � to the initiator.

4) The responder extracts a shared secret key 	� from ��.

5) The initiator forms the intermediate value �� = �� ∙ �� from their private key �� and the responder's public key ��. The initiator uses the check field � to extract a shared secret key 	� from ��. The shared secret keys 	� and 	� will be the same with reasonable probability.

6.2.2 Public parameters

The public parameters for the LWE key exchange are:

• A pair of integers (
,�) which give the dimensions of the matrices;

• An integer � which gives the modulus for the matrix entries;

• A probability distribution over ℤ/�ℤ which is used to sample small matrix entries;

• An integer � giving the number of bits to use in key extraction; and

• A public
 ×
 matrix � with entries chosen independently and uniformly at random from ℤ/�ℤ.

The LWE modulus � is typically either prime or a power of two. The description below will follow [i.25] and assume
that � is a power of two to simplify key extraction and reconciliation.

The probability distribution will be a discrete Gaussian over ℤ with small standard deviation �, which is then reduced
modulo �.
The public matrix A can either be a fixed public parameter or can vary and forms part of the initiator's public key. If it
varies then the initiator needs to send the responder � or a seed which can be used to generate � deterministically.

NOTE: The one-dimensional discrete Gaussian can be replaced with a simpler distribution to improve efficiency.
See clause A.1.2 for more details.

6.2.3 Key generation

Key generation in the LWE key exchange is different for the initiator and for the responder.

The initiator's private key �� is an
 × � matrix generated by independently sampling the entries from . The initiator's
public key �� is the
 × �	matrix computed by first generating an
 × � noise matrix ��, with entries independently
sampled from , and then forming �� = � ∙ �� + �� .
The responder's private key �� is an � ×
 matrix generated by independently sampling the entries from . The
responder's public key �� is the � ×
	matrix computed by first generating an � ×
 noise matrix ��, with entries
independently sampled from , and then forming �� = �� ∙ � + ��.

6.2.4 Key extraction

Given the initiator's public key �� , the responder's intermediate value �� is the � × � matrix computed by first
generating an � × � noise matrix �′�, with entries independently sampled from , and then forming �� = �� ∙ �� + �′�.
The shared secret key 	� is extracted from �� by rounding the �	most significant bits from each entry; i.e., the (�, �)-th
entry of the shared secret key is:

	�[�, �] = Round�2�� ��[�, �]� 	mod	2�

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 19

where ��[�, �] is the (�, �)-th entry of the responder's intermediate value viewed as an integer in �−�/2, �/2 − 1�. As ��
is indistinguishable from a random � × � matrix over ℤ/�ℤ and � is assumed to be a power of two, this produces an
unbiased secret key.

6.2.5 Reconciliation

Given the responder's public key ��, the initiator's intermediate value is the � × � matrix �� = �� ∙ ��. This differs
from the responder's intermediate value by:

�� − �� = �� ∙ �� − �� ∙ �� + �′� .

In particular, rounding the � most significant bits from each entry of �� might not recover the same secret key 	�. The
probability of recovering 	� is improved by using a reconciliation mechanism: the responder sends the initiator a check
field which allows the initiator to correct errors in their key extraction.

More specifically, the responder's check field � is the � × � matrix over ℤ/2ℤ obtained by cross-rounding the entries
of ��; i.e., the (�, �)-th entry of the check field is:

 �[�, �] = Floor �����
�

��[�, �]� 	mod	2

where ��[�, �] is the (�, �)-th entry of the responder's intermediate value viewed as an integer in �−�/2, �/2 − 1�.
The initiator uses the responder's check field � to adjust the rounding when extracting the shared secret key 	� from
their intermediate value ��. The (�, �)-th entry of the shared secret key obtained from reconciliation is:

	���, �� = Round�2�� ����, �� + 1

4
�2���, �� − 1�� 	mod	2�

where ��[�, �] is the (�, �)-th entry of the initiator's intermediate value viewed as an integer in �−�/2, �/2 − 1�.
NOTE: Reconciliation improves the probability that the initiator and responder both extract the same shared

secret key, but key exchange failures might still occur. See clause A.1.4 for more details.

6.3 Ring-LWE key exchange

6.3.1 Overview

The Ring-LWE key exchange follows a similar format to the LWE exchange with matrices replaced by polynomials.
This reduces the size of the public keys and allows more efficient arithmetic by introducing structure to the lattices.

Each party generates a key pair and sends their public key to the other party, but as small noise terms are added to the
public keys the "shared values" that each party computes will differ by a small amount. The responder therefore also
sends the initiator an additional check field so that they are both able to compute the same shared secret key with
reasonable probability.

The Ring-LWE key exchange uses a public polynomial �. This can be a fixed system parameter chosen by a trusted
party during the setup of the scheme as in [i.24], freshly generated by the initiator for each key exchange as in [i.27], or
agreed upon in some other manner providing a trade-off between performance and security. Further discussion can be
found in clause A.1.3.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 20

Figure 2: Ring-LWE key exchange with public polynomial �
The Ring-LWE key exchange proceeds as follows and is illustrated in figure 2:

1) The initiator generates a private key �� and private noise term ��, both of which are polynomials with small
coefficients. The initiator's corresponding public key �� = �� ∙ � + �� is computed from their private key ��,
private noise term �� and the public polynomial �.	The initiator sends their public key �� to the responder.

2) The responder generates a private key �� and private noise term ��, both of which are polynomials with small
coefficients. The responder's corresponding public key �� = �� ∙ � + �� is computed from their private key ��,
private noise term �� and the public polynomial �.

3) The responder generates a second noise term �′�, which is a polynomial with small coefficients, and forms the
intermediate value �� = �� ∙ �� + �′� from their private key ��, the initiator's public key �� , and their second
noise term �′�. The responder computes a check field � from �� and sends their public key �� and check field � to the initiator.

4) The responder extracts a shared secret key 	� from ��.

5) The initiator forms the intermediate value �� = �� ∙ �� from their private key �� and the responder's public key ��. The initiator uses the check field � to extract a shared secret key 	� from ��. The shared secret keys 	� and 	� will be the same with reasonable probability.

6.3.2 Public parameters

The public parameters for the Ring-LWE key exchange are:

• An integer � which defines the ring � = 	ℤ���/�Φ���� where Φ���� is the �-th cyclotomic polynomial;

• A prime integer � which gives the modulus for the ring �� = �/��;

• A probability distribution which is used to sample small polynomials from �; and

• A public polynomial � ∈ �� with coefficients chosen independently and uniformly at random from ℤ/�ℤ.

Initiator

Generate small private key 	�
Generate small private noise
�
Compute public key �� = 	� ∙ � +
�

Compute value	�� = 	� ∙ ��
Extract secret key � = Rec(�� ,�)

��

�� ,�

Responder

Generate small private key 	�
Generate small private noise
�
Compute public key �� = 	� ∙ � +
�

Generate small private noise
′�
Compute value �� = 	� ∙ �� +
′�
Compute check field � = Check(��)

Extract secret key � = Extract(��)

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 21

The integer � is typically a prime or a power of two and the prime � is chosen to be congruent to 1 modulo �. The
description below follows [i.28] and [i.29] and assumes that � is a power of two. In this case the cyclotomic
polynomial is Φ���� = 1 + ��/�. Let
 = �/2 denote the degree of the polynomial Φ���� and so the dimension of
the ring �.

The probability distribution used to sample small polynomials from � is usually chosen to be a discrete Gaussian. In
the power of two case, this can be achieved by generating polynomials of the form � = �� + �	� + ⋯+ �
�	�
�	 ∈ �
where the coefficients �� are sampled independently from a one-dimensional discrete Gaussian distribution of small
standard deviation �.

The public polynomial � can either be a fixed public parameter or can vary and forms part of the initiator's public key.
If it varies then the initiator needs to send the responder � or a seed which can be used to generate � deterministically.

NOTE 1: Power-of-two cyclotomic rings offer more efficient polynomial arithmetic than prime cyclotomic rings,
but are less flexible for parameter selection. See clause A.1.1 for more details.

NOTE 2: The one-dimensional discrete Gaussian can be replaced by a simpler distribution to improve efficiency.
See clause A.1.2 for more details.

6.3.3 Key generation

 Key generation for the Ring-LWE key exchange is the same for the initiator and for the responder.

The private key �	is a polynomial in � sampled from the distribution . The corresponding public key � is the
polynomial in �� computed by first generating a noise term � ∈ � sampled from and then forming:

� = � ∙ � + �

where � and � are viewed as elements of �� by reducing their coefficients modulo �.

6.3.4 Key extraction

Given the initiator's public key �� , the responder's intermediate value �� is the polynomial in �� computed by first
generating a noise term �′� ∈ � sampled from and then forming �� = �� ∙ �� + �′� where �� and �′� are viewed as
elements of �� by reducing their coefficients modulo �.	The shared secret key is extracted from �� by randomized
rounding of the most significant bit from each coefficient. The �-th entry of the shared secret key is:

	���� = Round !2� ����� + 1

2� �′′�[�]" 	mod	2

where ����� is the �-th coefficient of the responder's intermediate value viewed as an integer in �– �� + 1�/2, (� − 1)/2�
and �′′�[�] is sampled from {−1,0,1} with probabilities #�	 = 1/4, #� = 1/2 and #	 = 1/4.

As � is odd, the additional randomization from �′′� is needed to avoid rounding biases in the shared secret key.

6.3.5 Reconciliation

Given the responder's public key ��, the initiator's intermediate value is the polynomial �� = �� ∙ �� in ��. This differs
from the responder's intermediate value by:

�� − �� = �� ∙ �� − �� ∙ �� + �′� .
In particular, rounding the most significant bit from each coefficient of $� might not recover the same secret key 	�.
The probability of recovering 	� is improved by using a reconciliation mechanism: the responder sends the initiator a
check field which allows the initiator to correct errors in their key extraction.

More specifically, the responder's check field � is the element in {0,1}
 obtained by cross-rounding the coefficients of ��; i.e., the �-th entry of the check field is:

���� = Floor !4� ����� + 1� �′′�[�]" 	mod	2

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 22

where ����� is the �-th coefficient of the responder's intermediate value viewed as an integer in �– �� + 1�/2, (� − 1)/2�
and �′′� is the additional noise term that was used by the responder in key extraction.

The initiator uses the responder's check field � to adjust the rounding when extracting the shared secret key 	� from
their intermediate value ��. The �-th entry of the shared secret key obtained from reconciliation is:

	���� = Round !2� ����� + 1

4
(2���� − 1)" 	mod	2

where ����� is the �-th coefficient of the initiator's intermediate value viewed as an integer in �– �� + 1�/2, (� − 1)/2�.
In this case randomized rounding is not necessary as the aim is to recover the responder's shared secret key.

NOTE: Reconciliation improves the probability that the initiator and responder both extract the same shared
secret key, but key exchange failures might still occur. See clause A.1.4 for more details.

6.4 Implementation considerations

6.4.1 Active security

Fluhrer [i.30] shows that if the initiator and responder fail to extract the same shared secret key following the
Ring-LWE key exchange then the responder can learn some information about the initiator's private key. Further, Ding
et al [i.31] describe an active attack where a dishonest responder using malformed public keys can recover the
responder's private key with only 2� key exchange attempts. It is not possible to validate Ring-LWE public keys
directly as malformed keys are indistinguishable from correctly formed ones. Instead, Peikert's actively secure key
exchange [i.24] protects against dishonest responders by using the Fujisaki-Okamoto transform. See clause A.2.3 for
more details.

The Fujisaki-Okamoto transform is not enough to block active attacks against static key exchanges by itself. If the
failure probability is high enough, then the responder can still try to recover the initiator's static private key using honest
key exchange failures. The total cost of the attack will have increased significantly as the responder now needs many
key generation attempts before they find a valid ephemeral key pair likely to cause a key exchange failure. However,
this key generation can be performed off-line and the number of on-line exchange attempts with the initiator will be
similar to the original attack. Consequently, for static key exchanges it is necessary to choose parameters which have a
negligible probability of failure.

6.4.2 Side-channel protection

An introduction to side-channel protection for lattice-based cryptography is provided in [i.32]. LWE and Ring-LWE
cryptosystems are vulnerable to both timing and power analysis attacks [i.33], [i.34] and [i.35]. Lattice-based
cryptosystems often use optimizations to accelerate performance, such as early exits or the use of pre-computed tables
to minimize latency, which have significant impact on the timings of a design. Discrete Gaussian sampling, an
operation often used in LWE and Ring-LWE schemes, is also vulnerable to timing attacks, due to inherent non-constant
run times or the use of cache access patterns [i.33]. Countermeasures for side-channel protection, such as constant time
implementations, masking and random shuffling, have already been used to protect lattice-based cryptosystems [i.36],
[i.37] and [i.38]. However, further investigation is necessary to ensure there is no information leakage after
implementation.

6.5 Parameter selection

6.5.1 LWE proposed parameters

Table 1 lists parameters that have been proposed for the LWE key exchange together with the corresponding public key
lengths, claimed security levels and estimated key exchange failure probabilities.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 23

Table 1: Proposed parameter sets for the LWE key exchange

Scheme � � � � �
Public key

length
Security level: Failure

probability Notes
Classical Quantum

Frodo 752 8 215 4 1,32 11 280 bytes 144 130 2-39 [i.25]
Frodo 864 8 215 4 1,32 12 960 bytes 177 161 2-34 [i.25]
spKEX 738 8 214 4 2,309 8 118 bytes 141 128 2-42 [i.26]

6.5.2 Ring-LWE proposed parameters

Table 2 lists parameters that have been proposed for the Ring-LWE key exchange together with the corresponding
public key lengths, claimed security levels and estimated key exchange failure probabilities.

Table 2: Proposed parameter sets for the Ring-LWE key exchange

Scheme � � � Public key
Length

Security level: Failure
probability Notes

Classical Quantum

BCNS 1 024 232 - 1 3,192 4 096 bytes 164 82 2-131072 [i.28] and
note 1

Singh 1 024 40 961 3,192 2 048 bytes 256 --- 2-91 [i.39] and
note 2

New Hope 1 024 12 289 2,828 1 792 bytes 281 255 2-60 [i.27] and
note 3

Singh-Chopra 540 41 117 3,192 1 080 bytes 165 146 2-87 [i.40]
NOTE 1: The only quantum security estimate given in [i.28] assumes a square root speed up due to Grover's

algorithm.
NOTE 2: Reference [i.39] claims that the parameters have at least 256 bits of classical security, but does not give a

quantum security estimate.
NOTE 3: The quoted failure probability is achieved using a more complicated reconciliation mechanism than the

scheme described in clause 6.3.5.

6.5.3 Security estimates

The claimed security levels given in tables 1 and 2 are taken directly from the referenced documents. In each case, the
authors have attempted to estimate the cost of the relevant lattice attacks against the proposed parameters. However,
variations in the lattice attacks being considered or differences in the lattice reduction heuristics being used can lead to
significantly different security estimates. Clause A.2.2 contains a comparison of the security estimate obtained
following the concrete approach in [i.41] and the conservative approach in [i.27].

6.6 Performance

6.6.1 Performance on a 64-bit processor

Table 3 gives performance estimates (in millions of clock cycles) for implementations of the LWE and Ring-LWE key
exchanges on a 64-bit Intel® Xeon® E5 (Sandy Bridge) processor or a 64-bit Intel® CoreTM i5 (Haswell) processor. The
first performance column refers to the initiator's key generation (step 1 in clauses 6.2.1 and 6.3.1); the second column
refers to the responder's key generation, check field calculation and key extraction (steps 2-4); and the third column
refers to the initiator's reconciliation (step 5).

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 24

Table 3: Performance of the LWE and Ring-LWE key exchanges on a 64-bit processor

Scheme
Performance: Communication:

Notes
Initiator (1) Responder (2-4) Initiator (5) Initiator Responder

Frodo 2,94 M cycles 3,45 M cycles 0,338 M cycles 11 377 bytes 11 296 bytes [i.25] and
note 1

spKEX 2,45 M cycles 2,22 M cycles 0,024 M cycles 8 150 bytes 8 142 bytes [i.26] and
note 2

BCNS 2,48 M cycles 4,00 M cycles 0,482 M cycles 4 096 bytes 4 224 bytes [i.28]

New Hope 0,258 M cycles 0,385 M cycles 0,086 M cycles 1 824 bytes 2 048 bytes [i.27] and
note 3

New Hope 0,089 M cycles 0,111 M cycles 0,019 M cycles 1 824 bytes 2 048 bytes [i.27] and
note 4

NOTE 1: The performance estimates are for an implementation on a 64-bit Intel® Xeon® E5 (Sandy Bridge) processor.
Key generation times for the initiator and responder include the cost of constructing the public matrix from a
seed. Reference [i.25] states that this takes approximately 1,4 M cycles.

NOTE 2: The performance estimates are for an implementation on a 64-bit Intel® CoreTM i5 (Haswell) processor. Key
generations times for the initiator and responder include the cost of permutating the public matrix.

NOTE 3: The performance estimates are for an unoptimized implementation on a 64-bit Intel® Xeon® E5 (Sandy
Bridge) processor. Key generation times for the initiator and responder include the cost of constructing the
public polynomial from a seed.

NOTE 4: The performance estimates are for an optimized implementation on a 64-bit Intel® Xeon® E5 (Sandy Bridge)
processor using AVX2 instructions. Key generation times for the initiator and responder include the cost of
constructing the public polynomial from a seed.

6.6.2 Performance on a 32-bit embedded processor

Table 4 gives performance estimates (in millions of clock cycles) for an implementation of the LWE key exchange on a
single board computer containing a 32-bit ARM® Cortex®-A8 core.

Table 4: Performance of the LWE key exchange on a 32-bit embedded processor

Scheme
Performance: Communication:

Notes
Initiator (1) Responder (2-4) Initiator (5) Initiator Responder

Frodo 77,5 M cycles 80,2 M cycles 1,09 M cycles 11 377 bytes 11 296 bytes [i.25] and
note

NOTE: Key generation times for the initiator and responder include the cost of constructing the public matrix from a
seed.

6.6.3 Performance on 32-bit microcontrollers

Table 5 gives performance estimates (in clock cycles) for implementations of the Ring-LWE key exchange on a pair of
microcontrollers containing either an 32-bit ARM® Cortex®-M4 or an ARM® Cortex®-M0 cores.

Table 5: Performance of the Ring-LWE key exchange on 32-bit microcontrollers

Scheme
Performance: Communication:

Notes
Initiator (1) Responder (2-4) Initiator (5) Initiator Responder

New Hope 0,964 M cycles 1,42 M cycles 0,179 M cycles 1 824 bytes 2 048 bytes [i.29] and
note 1

New Hope 1,17 M cycles 1,74 M cycles 0,299 M cycles 1 824 bytes 2 048 bytes [i.29] and
note 2

NOTE 1: The performance estimates are for New Hope on a 32-bit ARM® Cortex®-M4 core. Key generation times for
the initiator and responder include the cost of constructing the public polynomial from a seed. Reference
[i.29] states that this takes 0,294 M cycles. The implementation used 22,8 Kbytes of internal flash memory.

NOTE 2: The performance estimates are for New Hope on a 32-bit ARM® Cortex®-M0 core. Key generation times for
the initiator and responder include the cost of constructing the public polynomial from a seed. Reference
[i.29] states that this takes 0,381 M cycles. The implementation used 30,2 Kbytes of internal flash memory.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 25

6.7 Summary
The LWE and Ring-LWE problems are gaining popularity as techniques for constructing quantum-safe cryptosystems
and there have been a large number of concrete proposals for both key exchanges and other public-key primitives.

Ring-LWE key exchanges have reasonably compact public keys and good performance even on constrained devices so
they would be suitable as general-purpose drop-in replacements for ephemeral DH and ECDH key exchanges. If they
are used to replace static DH or ECDH key exchanges then they can be vulnerable to attacks that exploit invalid public
keys or key exchange failures unless appropriate countermeasures are taken.

LWE key exchanges offer more flexibility in parameter selection by avoiding the use of structured lattices, but are not
as efficient so could only replace DH and ECDH key exchanges in applications that can tolerate larger public keys. The
recently proposed Crystals suite [i.42] and [i.43] attempts to balance flexibility and efficiency by using Module-LWE
[i.44].

The provable security results give a level of confidence in the proposals, the practical security of the underlying lattice
problems is increasingly well understood, and there is on-going research into side-channel attacks and mitigation.

7 Supersingular isogenies

7.1 Introduction
Cryptography based on isogenies between supersingular elliptic curves is a relatively new area of research. The SIDH
key exchange was first introduced by Jao and De Feo [i.45] in 2011. It has subsequently been refined in follow-up work
by De Feo, Jao and Plût [i.46] and Costello, Longa and Naehrig [i.47].

Clause 7.2 gives a high-level description of the SIDH key exchange and a brief outline of the mathematical background
can be found in clause B.1. Clause 7.3 discusses some implementation considerations, clause 7.4 lists proposed
parameters, and clause 7.5 gives performance estimates. Further discussion of security considerations can be found in
clause B.2. Performance comparisons with other key exchanges can be found in annex C.

7.2 SIDH key exchange

7.2.1 Overview

The SIDH key exchange follows the same general format as a Diffie-Hellman key exchange: each party generates a key
pair and sends their public key to the other party. However, the two parties use different subgroups of the elliptic curve
to construct their key pairs. This means that the key exchange is not symmetric and so it will be clearer to describe the
key exchange in terms of an initiator, who starts the exchange, and a responder.

The SIDH key exchange uses a public supersingular curve � with two pairs of auxiliary points %&� ,'�(and %&� ,'�(.
These can either involve a specified curve as in [i.47] or a curve generated randomly by a trusted party during the setup
of a scheme as in [i.46]. Further discussion of parameter generation can be found in clause B.1.2.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 26

Figure 3: SIDH key exchange

The SIDH key exchange proceeds as follows and is illustrated in figure 3:

1) The initiator generates a point �� ∈ 〈&� ,'�〉, uses this to compute a private isogeny +�:� → �� = �/〈��〉 and
then calculates the images +�(&�) and +��'��.	The initiator sends the curve �� and points +�(&�), +�('�) to
the responder.

2) The responder generates a point �� ∈ 〈&� ,'�〉, uses this to compute a private isogeny +�:� → �� = �/〈��〉
and then calculates the images +�(&�) and +��'��.	The responder sends the curve �� and points +�(&�), +�('�) to the initiator.

3) The responder uses the initiator's public points +�(&�), +�('�) to recover the image +����� of �� under the
initiator's private isogeny +�. The responder computes the curve ��� = ��/〈+�����〉 and derives the shared
secret key from the �-invariant of ���.

4) The initiator uses the responder's public points +�(&�) and +�('�) to recover the image +����� of �� under
the responder's private isogeny +�. The initiator computes the curve ��� = ��/〈+�����〉 and derives the
shared secret key from the �-invariant of ��� .

7.2.2 Public parameters

The public parameters for the SIDH key exchange are:

• A prime # of the form # = ,��,��- ± 1 where ,� and ,� are small primes and - is an optional cofactor;

• A fixed supersingular elliptic curve � over GF(#�);

• A pair of auxiliary points %&� ,'�(that generate the ,��-torsion subgroup �.,��/; and

• A pair of auxiliary points %&� ,'�(that generate the ,��-torsion subgroup �.,��/.
The prime is typically chosen to have the form	# = ,��,��- − 1 to allow efficient arithmetic in GF(#�). The small
primes are typically chosen to be ,� = 2 and ,� = 3 as these allow efficient isogeny calculations. The exponents �� and �� are chosen so that ,�� and ,�� are approximately the same size to balance the sizes of the torsion subgroups for the
initiator and responder.

When # ≡ 3	�mod	4� the supersingular elliptic curve � can be chosen to be 0� = �� + �. However, it is also possible
to generate a random supersingular curve over GF(#�) during the setup of the scheme. The process for generating
random parameters is outlined in clause B.1.2.

7.2.3 Key generation

The private key consists of a pair of integers and the public key consists of an elliptic curve over	GF(#�) isogenous to �
and a pair of points on the curve. However, the key generation process is slightly different for the initiator and
responder.

Initiator

Generate point �� ∈ 〈� ,��〉
Compute isogeny ��:� → �� = �/〈��〉
Calculate images ��(�) and ��(��)

Recover ������ ∈ 〈�����,��(��)〉
Compute curve ��� = ��/〈������〉
Derive secret key � from �(���)

�� ,�����,��(��)

�� ,�����,��(��)

Responder

Generate point �� ∈ 〈� ,��〉
Compute isogeny ��:� → �� = �/〈��〉
Calculate images ��(�) and ��(��)

Recover ������ ∈ 〈�����,��(��)〉
Compute curve ��� = ��/〈������
Derive secret key � from �(���)

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 27

The initiator randomly chooses a pair of integers �� ,
� ∈ ℤ/,��ℤ and forms the point �� = ��&� +
�'� ∈ �.,��/.
The initiator then computes the isogenous curve �� corresponding to the isogeny +�:� ⟶ �� = �/〈��〉 given by the
kernel 〈��〉. Finally, the initiator computes the images +��&�� and +��'�� of the responder's auxiliary points &� ,'�
under the isogeny +� . The initiator's private key is the pair %��,
�(and their public key is the triple %�� ,+��&��,+��'��(.
The responder randomly chooses a pair of integers �� ,
� ∈ ℤ/,��ℤ and forms the point �� = ��&� +
�'� ∈ �.,��/.
The responder then computes the isogenous curve �� corresponding to the isogeny +�:� ⟶ �� = �/〈��〉 given by the
kernel 〈��〉. Finally, the initiator computes the images +��&�� and +��'�� of the initiator's auxiliary points &� ,'�
under the isogeny +� . The responder's private key is the pair %�� ,
�(and their public key is the triple %�� ,+��&��,+��'��(.

NOTE: Various compression techniques have been proposed which reduce the size of the SIDH public keys, but
in some cases increase the computational cost for both parties. These are briefly described in clause B.1.3.

7.2.4 Key exchange

The initiator and responder exchange public keys and use them, together with their private keys, to derive a shared
secret key. Again, the key derivation is slightly different for the initiator and responder.

The initiator uses their private values ��,
� and the responder's public points +��&��,+��'�� to compute the point:

��+��&�� +
�+��'�� = +����&�� + +��
�'�� = +����&� +
�'�� = +�����.
The initiator then computes the isogenous curve ��� corresponding to the isogeny +��:�� ⟶ ��� = ��/〈+�����〉
given by the kernel 〈+�����〉 ⊂ ��. Finally, the initiator derives the shared secret key 	 from �(���), the �-invariant of
the curve ��� .

The responder uses their private values �� ,
� and the initiator's public points +��&��,+��'�� to compute the point:

��+��&�� +
�+��'�� = +����&�� + +��
�'�� = +����&� +
�'�� = +�����.
The initiator then computes the isogenous curve ��� corresponding to the isogeny +��:�� ⟶ ��� = ��/〈+�����〉
given by the kernel 〈+�����〉 ⊂ ��. Finally, the responder derives the shared secret key 	 from �(���), the �-invariant
of the curve ���.

Note that +����� is the image of the initiator's kernel generator �� in the responder's curve �� and +����� is the image
of the responder's kernel generator �� in the initiator's curve ��. This means that the curve ��� computed by the
initiator and the curve ��� computed by the responder are isomorphic and so they will have the same �-invariant.

7.3 Implementation considerations

7.3.1 Static key exchanges

It is well known that static ECDH key exchanges can be vulnerable to invalid public key attacks [i.6] and the same is
true for SIDH. Galbraith et al [i.48] describe an active attack in which a malicious responder modifies the points in a
valid public key and observes whether this causes the key exchange to fail. Each exchange reveals some information
about the initiator's private key and the attacker can recover a full static key with at most log�(#)/2 exchange attempts.

The proposal by Costello et al. [i.47] claims that public key validation can be performed directly by checking that the
curve is isogenous to the base curve � and that the points are independent and have the correct order. However, this
form of validation does not prevent the attack in [i.48] as the points are not necessarily the correct images under the
isogeny. Indeed, [i.49] shows that the ability to distinguishing valid SIDH public keys from invalid ones is enough to
recover the private key. For active security, it is necessary to validate the public keys indirectly and [i.48] suggests
using the variant of the Fujisaki-Okamoto transform described in [i.50]. See clause B.1.3 for more details.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 28

7.3.2 Side-channel protection

There has been little research into side-channel vulnerabilities in implementations of the SIDH key exchange. Galbraith
et al [i.48] suggest a potential attack against SIDH that recovers the shared secret key from a previous exchange, but
this assumes a hypothetical side-channel to leak partial information about the �-invariants. There are also fault injection
attacks [i.51] and [i.52] that can recover the initiator's static private key by inducing a fault in either the input to an
isogeny computation or the computation itself. These have been adapted from techniques used successfully against
other elliptic curve cryptosystems and apply even when the indirect key validation from [i.50] is used. It is possible that
other elliptic curve side-channel approaches could similarly be adapted to work against SIDH key exchanges.

7.4 Parameter selection

7.4.1 Proposed parameters

Table 6 lists parameters that have been proposed for the SIDH key exchange together with the corresponding public key
sizes and claimed security levels. The compressed public keys use the techniques from [i.53].

Table 6: Proposed parameter sets for the SIDH key exchange

Scheme �
Public key length: Security level:

Notes
Uncompressed Compressed Classical Quantum

Jao-De Feo 2258 3161 186 - 1 523 bytes 229 bytes 130 bits 86 bits [i.45]
Jao-De Feo 2341 3218 3 - 1 670 bytes 302 bytes 172 bits 114 bits [i.45]
Jao-De Feo 2386 3242 2 - 1 772 bytes 338 bytes 192 bits 128 bits [i.45]
Jao-De Feo 2514 3323 353 - 1 1 036 bytes 453 bytes 258 bits 172 bits [i.45]

SIDH 2372 3239 - 1 752 bytes 329 bytes 187 bits 125 bits [i.47] and note
NOTE: The SIDH key exchange described in [i.47] uses a form of compression which reduces the size of the public

key to 564 bytes without affecting the performance.

7.4.2 Security estimates

The claimed security levels given in table 6 are based on the estimate that the cost of recovering the private isogeny for
an
-bit prime # is approximately
/4 bits of classical work and
/6 bits of quantum work. Clause B.2 contains a more
detailed discussion of the security of the SIDH key exchange.

7.5 Performance

7.5.1 Performance on a 64-bit desktop processor

Table 7 gives performance estimates (in millions of clock cycles) for an implementation of the SIDH key exchange on a
64-bit Intel® CoreTM i7 (Haswell) desktop processor. Figures are provided for the key exchange using the partial public
key compression from [i47] and the full public key compression from [i.53]. The first performance column refers to the
initiator's key generation (step 1 in clause 7.2.1); the second column refers to the responder's key generation and
exchange computation (steps 2 and 3); and the third column refers to the initiator's key exchange computation (step 4).

Table 7: Performance of the SIDH key exchange on a 64-bit desktop processor

Scheme �
Performance:

Public key Notes
Initiator (1) Responder (2-3) Initiator (4)

SIDH 2372 3239 - 1 90 M cycles 204 M cycles 90 M cycles 564 bytes [i.53] and
note 1

SIDH 2372 3239 - 1 205 M cycles 375 M cycles 122 M cycles 329 bytes [i.53] and
note 2

NOTE 1: The quoted performance estimates are for SIDH with partially compressed public keys.
NOTE 2: The quoted performance estimates are for SIDH with fully compressed public keys.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 29

7.5.2 Performance on a 64-bit embedded processor

Table 8 gives performance estimates (in millions of clock cycles) for an implementation of the SIDH key exchange on a
single board computer containing a 64-bit ARM® Cortex®-A57 core that has been optimized to use the NEON
instruction set.

Table 8: Performance of the SIDH key exchange on a 64-bit embedded processor

Scheme �
Performance:

Public key Notes
Initiator (1) Responder (2-3) Initiator (4)

SIDH 2372 3239 - 1 103 M cycles 231 M cycles 97 M cycles 564 bytes [i.54]
SIDH 2486 3301 - 1 201 M cycles 459 M cycles 188 M cycles 726 bytes [i.54]

7.5.3 Performance on a 32-bit embedded processor

Table 9 gives performance estimates (in millions of clock cycles) for an implementation of the SIDH key exchange on a
single board computer containing a 32-bit ARM® Cortex®-A15 core that has been optimized to use the NEON
instruction set.

Table 9: Performance of the SIDH key exchange on a 32-bit embedded processor

Scheme �
Performance:

Public key Notes
Initiator (1) Responder (2-3) Initiator (4)

SIDH 2250 3159 - 1 83 M cycles 155 M cycles 66 M cycles 377 bytes [i.55]
SIDH 2372 3239 - 1 437 M cycles 849 M cycles 346 M cycles 564 bytes [i.55]
SIDH 2501 3316 41 - 1 603 M cycles 1 141 M cycles 516 M cycles 756 bytes [i.55]

7.6 Summary
Isogeny-based cryptography is still relatively new and the key exchange is essentially the first concrete proposal for an
isogeny-based primitive.

The SIDH key exchange has small public keys, particularly when additional compression techniques are used, but its
performance is not as good as other quantum-safe key exchanges. It could be a suitable drop-in replacement for DH or
ECDH key exchanges in applications where performance is less important than key sizes or where highly-optimized
implementations are possible. If it is used to replace static DH or ECDH key exchanges then it can be vulnerable to
attacks that exploit invalid public keys unless appropriate countermeasures are taken.

The general problem of recovering an unknown isogeny between two supersingular curves has been relatively well
studied, but there has been little analysis of the SIDH key exchange itself or of side-channel vulnerabilities in its
implementations. Consequently, more research is needed before a consensus can be established around the security of
the SIDH key exchange.

8 Key exchanges from key transport mechanisms

8.1 General construction
In a key transport mechanism, the secret key is generated by the responder and encrypted under the initiator's public
key. However, a shared secret key produced by a key exchange is derived from information contributed by both the
initiator and responder so that it cannot be completely controlled by either one of them.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 30

Figure 4: Key exchange from a key transport mechanism

Although not widely used, there are various methods for converting a key transport mechanism into a key exchange.
One option, described below and illustrated in figure 4, is to use the public key as one of the inputs to the final Key
Derivation Function (KDF):

1) The initiator generates a private key 1 and computes the corresponding public key �. The initiator sends the
public key � to the responder.

2) The responder generates a random seed � and encrypts it using the initiator's public key � to obtain the
ciphertext � = Encrypt�(�). The responder sends the ciphertext � to the initiator.

3) The responder derives the shared secret key � = KDF��,�� from the random seed � and the initiator's public
key �.

4) The initiator uses their private key � to decrypt the seed � = Decrypt�(�) and derives the shared secret key
� = KDF��,�� from the decrypted seed � and the public key �.

If the key derivation function is secure then the responder will have no more control over the final shared secret key
than in a DH-style key exchange.

Clause 8.2 describes a key exchange based on Niederreiter key transport and clause 8.3 describes a key exchange based
on NTRUEncrypt key transport. More examples of quantum-safe key transport mechanisms can be found in [i.2].

8.2 Niederreiter

8.2.1 Introduction

The Niederreiter cryptosystem [i.56] is a code-based key transport mechanism based on McEliece encryption [i.57], one
of the first public-key cryptographic algorithms. Its security relies on the difficulty of the decoding problem in a random
code and the indistinguishability of the code used in the scheme from a random code. McEliece's proposal to use binary
Goppa codes gives very large public keys, but most of the attempts to reduce key sizes by introducing different code
families have been broken over time. The original proposal has withstood analysis for almost 40 years and has become
a trusted candidate for post-quantum cryptography.

Clause 8.2.2 gives a description of the Niederreiter key exchange, clause 8.2.3 discusses some implementation
considerations, clause 8.2.4 lists proposed parameters, and clause 8.2.5 gives performance estimates. Performance
comparisons with other key exchanges can be found in annex C.

8.2.2 Niederreiter key exchange

8.2.2.1 Overview

The key exchange is obtained from the Niederreiter key transport using the conversion described in clause 8.1. The
initiator's public key is a parity check matrix for a binary Goppa code that has been scrambled to hide the structure in
the code. The private key consists of the information used to construct the Goppa code and the scrambling matrix. The
responder selects a random error vector and uses the public parity matrix to compute the corresponding syndrome. The
initiator knows the scrambling of the public key and the structure of the code and can therefore decode the syndrome to
recover the error vector. The shared secret key is derived from the error vector and public parity check matrix.

Initiator

Generate private key �
Compute public key �

Decrypt � = Decrypt�(�)
Derive secret key � = KDF(�,�)

�

�

Responder

Generate random seed �
Encrypt � = Encrypt�(�)

Derive secret key � = KDF(�,�)

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 31

Figure 5: Niederreiter key exchange

More specifically, the Niederreiter key exchange consists of the following steps, as illustrated in figure 5:

1) The initiator generates a random binary Goppa code with private parity check matrix � and computes the
public key �� = �� where � is a random invertible binary matrix. The initiator sends the public key �′ to the
responder.

2) The responder generates a random binary error vector 	 of fixed length and Hamming weight, and computes
the ciphertext
 = �′	�. The responder sends the ciphertext
 to the initiator.

3) The responder derives the shared secret key � = KDF�	,�′� from the error vector 	 and the public key �′.
4) The initiator descrambles the ciphertext by multiplying it by the inverse of � to obtain ���
 = �	� and uses

the private Goppa code structure to decode the error vector 	. The initiator then derives the shared secret key
� = KDF�	,�′�	from the decoded error vector 	 and the public parity check matrix �′.

8.2.2.2 Public parameters

The public parameters for the Niederreiter key exchange are:

• The length � of the code;

• The rank of the code; and

• The Hamming weight � of the error vector.

The binary Goppa code is defined by a square-free polynomial of degree � over a finite field GF(2�) and a vector of �
distinct elements from GF(2�) that are not roots of the polynomial. For the security of the scheme, it is important that
both the Goppa polynomial and the support vector are kept private.

The Goppa code can correct � errors and is usually chosen so that it has full rank = � −�� where � = �log�(�)�.
The number of correctable errors can be increased by using list decoding techniques.

The error vector 	 is a random binary vector of length � and Hamming weight � and the ciphertext
 = �′	� is a binary
vector of length � − .

8.2.2.3 Key generation

In practice, the Goppa polynomial is usually assumed to be irreducible since Shoup's algorithm [i.58] can be used to
efficiently generate a uniformly random irreducible polynomial of degree �.

The scrambling matrix � can often be chosen so that the (� −) × � public parity check matrix �′ is in standard form;
that is, �� = ��	�
 �′′� where �	�
 is the (� −) × (� −) identity matrix. This can always be done after swapping
some of the columns of �, together with corresponding entries of the support vector. The effective size of the public
key can therefore be reduced by insisting that �′ is in standard form and only sending the (� −) × binary matrix
�′′.

Initiator

Generate parity check matrix �
Generate scrambling matrix �
Compute public key �� = ��

Compute �� = ����
Decode � = Decode(��)
Derive secret key � = KDF(�,�′)

�′

�

Responder

Generate fixed weight error vector �
Compute ciphertext � = ����

Derive secret key � = KDF(�,�′)

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 32

8.2.2.4 Decryption

Binary Goppa codes can be efficiently decoded by Patterson's algorithm [i.59] or Berlekamp's algorithm [i.60]. Both
algorithms will decode t errors in a binary Goppa code. Patterson's algorithm seems to be somewhat faster when not
decoding more than t errors, while Berlekamp's algorithm can be implemented more compactly.

8.2.3 Implementation considerations

8.2.3.1 Active attacks

In general, the McEliece and Niederreiter encryption schemes are vulnerable to a range of active attacks so need to be
used with an appropriate conversion, such as [i.61], to provide semantic security. This is not necessary for the
Niederreiter key exchange as the same attacks do not apply in this case. Persichetti [i.62] describes an actively secure
Key Encapsulation Mechanism (KEM) that is very similar to the key exchange in clause 8.2.2. The main difference
between the two schemes is that Persichetti's KEM returns a pseudo-randomly chosen secret key when there is a
decoding failure.

NOTE: Although the modified KEM in [i.62] has a security proof in the random oracle model, it is not clear that
it is secure against attacks that exploit decoding failures [i.63] since it would still be possible for a
malicious responder to detect a failure. This type of attack is not a concern when using binary Goppa
codes.

8.2.3.2 Side-channel attacks

The side-channel security of code-based cryptography is an active area of research. There are a number of different
side-channel attacks on McEliece and Niederreiter decryption [i.64] and [i.65] that exploit timing or power information
leaked by the decoding algorithm to recover the private key. Berlekamp's algorithm is easier to protect against side-
channel attacks than Patterson's algorithm, but it can still be difficult to eliminate all the side-channel information. For
example, although McBits [i.66] claims to implement a constant-time decoding algorithm, [i.67] suggests that it could
still be vulnerable to the timing attack described in [i.68].

8.2.4 Parameter selection

8.2.4.1 Proposed parameters

Table 10 lists parameters that have been proposed for the Niederreiter key transport mechanism together with their
classical and quantum security estimates.

Table 10: Proposed parameter sets for the Niederreiter key exchange

Scheme � � � Public key Ciphertext
Security estimates:

Notes
Classical Quantum

PQCrypto 6 960 5 413 119 1 046 739 bytes 194 bytes 263 ≥ 128 [i.69] and
note 1

Bernstein et al 2 960 2 288 57 192 192 bytes 84 bytes 128 ≥ 64
[i.70] and

note 2

Bernstein et al 6 624 5 129 117 958 482 bytes 187 bytes 256 ≥ 128 [i.70] and
note 3

de Vries 5 542 4 242 100 689 325 bytes 163 bytes 199 128 [i.71]
NOTE 1: These are the initial recommendations from the PQCrypto project [i.69]. The analysis from [i.71] suggests

that the parameters have 249 bits of classical security and 153 bits of quantum security.
NOTE 2: These parameters use list decoding [i.72] to increase the number of errors that can be decoded from 56 to

57. The analysis from [i.71] suggests that the parameters have 82 bits of quantum security.
NOTE 3: These parameters use list decoding [i.72] to increase the number of errors than can be decoded from 115 to

117. The analysis from [i.71] suggests that the parameters have 150 bits of quantum security.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 33

8.2.4.2 Security estimates

The Niederreiter key exchange parameters are chosen so that it is infeasible to distinguish the Goppa code from a
random binary code and to decode a random code with the same parameters. In practice, the most efficient attacks
against Niederreiter use information-set decoding techniques. The estimated cost of classical information-set decoding
is well-understood, but quantum approaches have been studied less. It is known that Grover's algorithm can speed up
existing decoding attacks [i.71] and [i.73] such that the time-complexity of quantum-decoding attacks is at least the
square root of the complexity of classical decoding attacks. Recently, the impact of Grover's algorithm on decoding
binary Goppa codes was studied in more detail [i.71], resulting in smaller parameters.

8.2.5 Performance

8.2.5.1 Performance on a 64-bit server processor

Table 11 gives performance estimates (in millions of clock cycles) for an implementation of a hybrid version of
McEliece encryption on a 64-bit Intel® Xeon® E3 (Sandy Bridge) server processor.

Table 11: Performance of McEliece encryption on a 64-bit server processor

Scheme � � �
Performance:

Public key Notes
Key generation Encryption Decryption

McEliece 2 048 1 696 32 30,9 M cycles 0,049 M cycles 1,09 M cycles 74 264 bytes [i.74] and
note

NOTE: This is an implementation of the hybrid McEliece scheme from [i.75]. The designers estimate that the
proposed parameters provide 88 bits of classical security.

8.2.5.2 Performance on a 64-bit desktop processor

Table 12 gives performance estimates (in millions of clock cycles) for the McBits implementation of Niederreiter
encryption on a 64-bit Intel® CoreTM i7 (Ivy Bridge) desktop processor.

Table 12: Performance of Niederreiter encryption on a 64-bit desktop processor

Scheme � � �
Performance:

Public key Notes
Key generation Encryption Decryption

McBits 2 690 2 018 56 --- --- 0,071 M cycles 169 512 bytes [i.66]
McBits 6 624 5 129 115 --- --- 0,297 M cycles 958 482 bytes [i.66]
McBits 8 192 6 528 128 1 550 M cycles 0,312 M cycles 0,492 M cycles 1 357 824 bytes [i.76]

8.2.5.3 Performance on an 8-bit microcontroller

Table 13 gives performance estimates (in millions of clock cycles) for an implementation of Niederreiter encryption on
an 8-bit Atmel® AVR® XMEGA® microcontroller.

Table 13: Performance of Niederreiter encryption on an 8-bit microcontroller

Scheme � � �
Performance:

Public key Notes
Key generation Encryption Decryption

Niederreiter 2 048 1 751 27 --- 0,051 M cycles 5,75 M cycles 65 006 bytes [i.77] and
note

NOTE: The parameters are estimated to provide 80 bits of security. The implementation used 173 Kbytes of internal
flash memory including the private and public keys.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 34

8.2.6 Summary

Niederreiter encryption using binary Goppa codes is a well-known and well-trusted quantum-safe cryptosystem. The
encryption and decryption operations are fast even on constrained devices, but the public keys are very large and key
generation is relatively slow. Consequently, the Niederreiter key exchange could not be used as a general-purpose
drop-in replacement for DH and ECDH key exchanges as most protocols would likely need to be adapted to
accommodate the larger keys. However, it might be a replacement for static DH or ECDH in applications where very
large public keys can be tolerated and where there is a need for a high level of confidence in the long-term security of
the parameters.

8.3 NTRU

8.3.1 Introduction

NTRUEncrypt [i.18] is a lattice-based encryption scheme that was first proposed in 1996. The security of
NTRUEncrypt relies on the difficulty of finding an unusually short vector in a well-structured NTRU lattice. There
have been several updates to the parameters following improvements to lattice techniques, but the scheme has largely
resisted twenty years of analysis.

Clause 8.3.2 gives a description of the NTRU key exchange, clause 8.3.3 discusses some implementation
considerations, clause 8.3.4 lists proposed parameters, and clause 8.3.5 gives performance estimates. Performance
comparisons with other key exchanges can be found in annex C.

8.3.2 NTRU key exchange

8.3.2.1 Overview

The NTRU key exchange is obtained from the NTRUEncrypt key transport mechanism using the conversion described
in clause 8.1. The initiator's public key is an element of a polynomial ring with modulus � that is privately constructed
as a quotient of two polynomials with small coefficients. Messages are represented by elements of a polynomial ring
with smaller modulus �. The responder encrypts a random message by blinding it with the public key and a small noise
polynomial. The initiator uses the private construction of the public key to remove the noise and recover the message.
The shared secret key is derived from the random message and the initiator's public polynomial.

Figure 6: NTRU key exchange

More specifically, the NTRU key exchange consists of the following steps, as illustrated in figure 6:

1) The initiator generates a pair of private polynomials f and g with small coefficients such that �� + 1 is
invertible modulo �. The initiator's corresponding public key is the quotient ℎ = 	�/(�� + 1). The initiator
sends the public key h to the responder.

2) The responder generates a random message polynomial � and random noise polynomial � with small
coefficients and then computes the ciphertext
 = ��ℎ +�. The responder sends the ciphertext c to the
initiator.

3) The responder derives the shared secret key � = KDF(�, ℎ) from the random message � and the initiator's
public polynomial ℎ.

Initiator

Generate small private 	,

Compute public ℎ = 	
/(�	 + 1)

Compute = (�	 + 1)�
Recover � = 		(mod	�)
Derive secret key � = KDF(�, ℎ)

ℎ

�

Responder

Generate small message �
Generate small noise �
Compute ciphertext � = ��ℎ +�

Derive secret key � = KDF(�, ℎ)

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 35

4) The initiator decrypts the message by computing � = (�� + 1)
 and then recovering � = �	(mod	�). The
initiator derives the shared secret key � = KDF(�, ℎ) from the decrypted message � and the public
polynomial ℎ.

8.3.2.2 Public parameters

The public parameters for the NTRU key exchange are:

• A prime � which defines the ring � = ℤ���/(�	 − 1);

• A large integer � which gives the modulus for the ring �� = �/��;

• A small integer � which defines the message space; and

• Distributions ��, �, �� and �� which are used to sample small polynomials from �.

The large modulus � is typically chosen to be a power of two for efficient arithmetic. The small modulus � is typically
chosen to be 3.

The distributions ��, �, �� and �� can be the same, but do not need to be. One option is to fix a value �	close to �/3
and use the uniform distribution over all polynomials in � with � coefficients equal to 1, � coefficients equal to −1,
and the remaining coefficients equal to 0. The parameter sets in [i.78] and [i.79] use this type of distribution for �, but
a more complicated product-form distribution for ��.

8.3.2.3 Decryption

Given the ciphertext
 = ��ℎ +�, the initiator attempts to decrypt the message by computing the value

� = ��� + 1�
 = ���� + ��� +�	�mod	��,
lifting it to � and reducing modulo �. This can fail if any of the coefficients of error term ���� + ��� are large enough
to wrap-around modulo �.

8.3.3 Implementation considerations

8.3.3.1 Static key exchange

There are various active attacks against NTRUEncrypt [i.80], [i.81] and [i.82] in which a malicious responder uses
decryption failures to recover the initiator's full static private key. In [i.80] and [i.82] the attacker needs to be able to see
the incorrectly decrypted message so these attacks do not apply to the NTRU key exchange. However, in [i.81] the
attacker only needs to know that decryption has failed which means that this attack could be used against the key
exchange.

The NTRUEncrypt parameters from [i.79] are chosen so that the probability of a decryption failure with a message
chosen from the correct distribution �� is at most 2��, where � is the security parameter. NTRU-KEM [i.83] is more
conservative and chooses the parameters so that decryption never fails when the messages are chosen from	�� .

Different techniques have been suggested to prevent a malicious responder from using malformed ciphertexts to force a
decryption failure. The actively secure NTRUEncrypt described in [i.84] includes a randomized padding scheme which
reduces the responder's control over the construction of the ciphertext. The actively secure NTRU-based KEMs in [i.83]
and [i.85] use variants of the Fujisaki-Okamoto transform which allow the initiator to verify that the responder
constructed the ciphertext honestly.

8.3.3.2 Side channel attacks

An introduction to side-channel protection for lattice-based cryptography is provided in [i.32]. NTRUEncrypt is
vulnerable to both timing [i.86] and power analysis [i.87] attacks that exploit information leaked during the decryption
process. Reference [i.83] introduces an efficient constant-time implementation of NTRU-KEM which should give
protection against timing attacks. However, it has been harder to produce countermeasures against power analysis
techniques [i.88] and [i.89].

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 36

8.3.4 Parameter selection

8.3.4.1 Proposed parameters

Table 14 lists parameters that have been proposed for NTRU-based key transport mechanisms with their classical and
quantum security estimates. A process for generating additional parameter sets is described in [i.79].

Table 14: Proposed parameter sets for the NTRU key exchange

Scheme � � �
Public key

length
Security estimates: Decryption

failure Notes
Classical Quantum

NTRUEncrypt 443 2 048 3 610 bytes 128 128 2-128 [i.78] and
note 1

NTRUEncrypt 587 2 048 3 808 bytes 192 128 2-192 [i.78] and
note 1

NTRUEncrypt 743 2 048 3 1 022 bytes 256 128 2-256 [i.78] and
note 1

NTRU-KEM 701 8 192 3 1 140 bytes 217 136 0 [i.83] and
note 2

NOTE 1: The quantum security estimates given in [i.78] are based on the hash functions used in key generation and
message encoding rather than the cost of the quantum hybrid attack.

NOTE 2: NTRU-KEM decryption can never fail for validly chosen messages.

8.3.4.2 Security estimates

In practice, the most efficient attack against NTRUEncrypt is the hybrid attack from [i.90] which combines lattice
reduction and a meet-in-the-middle search. The classical security analysis in [i.79] and [i.83 assumes that the lattice
reduction is performed using the Block Korkine-Zolotarev (BKZ) algorithm with pruned enumeration rather than the
asymptotically more efficient lattice sieving. This means that the security estimates in table 14 will be less conservative
than the corresponding classical estimates for the LWE and Ring-LWE key exchanges given in clause A.2.2. The
quantum version of the hybrid attack considered in [i.83] uses quantum enumeration or quantum sieving to improve the
efficiency of lattice reduction and replaces the meet-in-the-middle phase with a quantum search.

8.3.5 Performance

8.3.5.1 Performance on a 64-bit desktop processor

Table 15 gives performance estimates (in millions of clock cycles) for implementations of NTRUEncrypt and NTRU-
KEM on a 64-bit Intel® CoreTM i7 (Haswell) desktop processor.

Table 15: Performance of NTRUEncrypt and NTRU-KEM on a 64-bit desktop processor

Scheme � �
Performance:

Public key Notes
Key generation Encryption Decryption

NTRUEncrypt 439 2 048 0,452 M cycles 0,048 M cycles 0,050 M cycles 604 bytes [i.74]
NTRUEncrypt 593 2 048 0,697 M cycles 0,063 M cycles 0,065 M cycles 816 bytes [i.74]
NTRUEncrypt 743 2 048 0,974 M cycles 0,083 M cycles 0,090 M cycles 1 022 bytes [i.74]
NTRU-KEM 701 8 192 0,308 M cycles 0,049 M cycles 0,067 M cycles 1 140 bytes [i.83]

8.3.5.2 Performance on a 32-bit embedded processor

Table 16 gives performance estimates (in millions of clock cycles) for an implementation of NTRUEncrypt on a single
board computer containing a 32-bit ARM® Cortex®-A8 core.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 37

Table 16: Performance of NTRUEncrypt on a 32-bit embedded processor

Scheme � �
Performance:

Public key Notes
Key generation Encryption Decryption

NTRUEncrypt 439 2 048 10,8 M cycles 0,294 M cycles 0,528 M cycles 604 bytes [i.74]
NTRUEncrypt 593 2 048 19,4 M cycles 0,454 M cycles 0,817 M cycles 816 bytes [i.74]
NTRUEncrypt 743 2 048 30,4 M cycles 0,685 M cycles 1,29 M cycles 1 022 bytes [i.74]

8.3.5.3 Performance on a 32-bit microcontroller

Table 17 gives performance estimates (in millions of clock cycles) for an implementation of NTRUEncrypt on a 32-bit
ARM® Cortex®-M0 microcontroller.

Table 17: Performance of NTRUEncrypt on a 32-bit microcontroller

Scheme � �
Performance:

Public key Notes
Key generation Encryption Decryption

NTRUEncrypt 443 2 048 26,1 M cycles 0,588 M cycles 0,950 M cycles 610 bytes [i.91] and
note 1

NTRUEncrypt 587 2 048 45,7 M cycles 1,04 M cycles 1,63 M cycles 808 bytes
[i.91] and

note 2

NTRUEncrypt 743 2 048 71,2 M cycles 1,41 M cycles 2,38 M cycles 1 022 bytes [i.91] and
note 3

NOTE 1: The implementation used around 5,6 Kbytes of internal flash memory.
NOTE 2: The implementation used around 5,8 Kbytes of internal flash memory.
NOTE 3: The implementation used around 5,9 Kbytes of internal flash memory.

8.3.6 Summary

NTRUEncrypt was one of the first practical lattice-based cryptosystems and it has received considerable analysis. Its
public keys and ciphertexts are small and the performance of encryption and decryption is good, but key generation is
considerably slower than for the Ring-LWE key exchanges. Consequently, the NTRU key exchange could be used as a
drop-in replacement for ephemeral DH and ECDH key exchanges in applications where performance is not critical. If it
is used to replace static DH or ECDH key exchanges then it can be vulnerable to attacks that exploit decryption failures
unless appropriate countermeasures are taken.

9 Conclusions
A straightforward approach to transitioning from currently deployed public-key cryptography to quantum-safe
cryptography is to substitute the existing primitives with like-for-like quantum-safe "drop-in replacements". This
assumes that suitable alternatives with similar security levels and efficiency properties are available. For most network
security applications, the immediate quantum threat is to the confidentiality rather than the authentication.

ETSI GR QSC 003 [i.5] provides some examples of typical use cases for quantum-safe key exchanges together with an
extended discussion of practical implementation issues. These include integration into the protocol stack where the
larger public key sizes of most quantum-safe primitives will likely require more attention being paid to packet
fragmentation and handshake time-outs.

The present document considers in more detail a selection of proposals for quantum-safe key exchanges taken from the
academic literature. The LWE, Ring-LWE and SIDH key exchanges are the closest to being drop-in replacements for
DH or ECDH, although their public keys are all still somewhat larger than in existing key exchanges and they need to
be protected against active attacks.

The lattice-based key exchanges considered in clause 6 have been extensively studied in the academic literature. They
offer a good balance between security and efficiency, particularly when using structured lattices. However, as is
highlighted in clause A.1, there are a variety of implementation details that will need care to get right.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 38

The SIDH key exchange considered in clause 7 offers the most compact parameters, but at the expense of additional
computation. It is based on advanced mathematics that could be difficult for non-experts to implement. The main
drawback is that it is still a relatively new proposal and, as noted in ETSI GR QSC 001 [i.2], more research will be
needed for a consensus to be established around its security.

Other non-standard constructions for key exchanges are examined in clause 8. Key exchanges based on RSA are not in
common use today, but where such construction are being used a key exchange built from a quantum-safe key transport
mechanism such as Niederreiter or NTRU could provide a good quantum-safe replacement. The security and efficiency
properties of quantum-safe key transport mechanisms will be examined in greater detail in a separate document.

Finally, there have also been proposals for hybrid key exchanges in which the shared secret key is derived from a
combination of the outputs from a classical DH or ECDH key exchange and from a separate, and perhaps novel,
quantum-safe key exchange. This might be a viewed as an intermediate step in the transition to using purely quantum-
safe cryptography, or as a way of providing extra functionality or security. Hybrid schemes are discussed further in
ETSI GR QSC 003 [i.5].

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 39

Annex A:
LWE design and security considerations

A.1 LWE and Ring-LWE variants

A.1.1 Rings
Ring-LWE, and Polynomial-LWE more generally, is based on the polynomial ring � = ℤ���/(����) and its quotient
�� = (ℤ/�ℤ)[�]/(����) for some choice of irreducible polynomial ���� ∈ ℤ��� and prime modulus � ∈ ℤ.

Most concrete Ring-LWE proposals, including BCNS [i.28] and New Hope [i.27], choose a cyclotomic polynomial
���� = ��/� + 1 where � is a power of two and a modulus � ≡ 1	(mod	�). The advantage of this polynomial and
modulus is that arithmetic in �� can be implemented very efficiently using a special version of the Number-Theoretic
Transform (NTT). However, using power-of-two cyclotomic polynomials severely limits the choice of parameters so it
can lead to larger public key sizes than are necessary to achieve a desired level of security.

Cyclotomic polynomials ���� = ���� + ���� +⋯+ � + 1 where � is prime and � ≡ 1	(mod	�) offer a greater
range of parameter choices and so potentially smaller public keys, but only allow a less efficient version of the NTT for
the arithmetic. Comparing the results in [i.39] and [i.40] suggests that key exchanges using prime cyclotomic
polynomials are about 50 % slower than those using power-of-two cyclotomic polynomials, but have public keys that
are 10 to 20 % smaller for an equivalent security level.

There have been suggestions that the subfield structure of cyclotomic rings could be used to improve key recovery
attacks against NTRUEncrypt-style schemes [i.92] and [i.93]. NTRU Prime [i.94] is a proposal which uses a
polynomial of the form ���� = �� − � − 1 where � is a prime and choosing � so that �� is a prime field. The NTT
cannot be used with such rings so NTRU Prime relies on a combination of Karatsuba and Toom-Cook for the
polynomial arithmetic. The NTRU Prime designers claim that this can be made nearly as efficient as arithmetic using
the power-of-two NTT, but it is not possible to compare NTRU Prime and New Hope directly as [i.94] does not give
performance estimates for the full cryptographic operations. The attacks in [i.92] and [i.93] have been superseded by a
geometric attack on NTRU [i.95] that does not need subfields and so applies to NTRU Prime.

A.1.2 Distributions

A.1.2.1 Discrete Gaussians

The original definition of the LWE problem [i.19] assumed that the entries of the private key were sampled uniformly
from ℤ/�ℤ and that the error terms were sampled from a one-dimensional Gaussian distribution. The description of the
key exchange in clause 6.2 uses normal-form LWE [i.96] which allows the private keys to be sampled from the error
distribution while retaining the theoretical security guarantees.

In Ring-LWE schemes the coefficients of the private keys and noise terms are properly sampled from a spherical
discrete Gaussian [i.21]. For power-of-two cyclotomic rings, such as in New Hope [i.27], this is equivalent to sampling
each coefficient independently from a one-dimensional discrete Gaussian. For prime cyclotomic rings, such as in Singh-
Chopra [i.40], sampling the coefficients independently distorts the distribution so that it is no longer spherical. There
are approaches that can be taken to compensate for the distortion in this case [i.97]. However, in more general rings
some care needs to be taken to avoid choosing a weak distribution for that ring [i.98].

A.1.2.2 Approximate Gaussians

Sampling accurately from discrete Gaussians can be expensive, but for the LWE and Ring-LWE based key exchanges it
is possible to use approximate distributions without weakening the practical security of the scheme.

• Frodo [i.25] improves the efficiency of key generation by sampling from a simpler distribution on a bounded
interval which is still relatively close to a discrete Gaussian.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 40

• The performance estimates in [i.39] suggest that key generation using bounded uniform distributions can be
5-6 times faster than using a discrete Gaussian.

• Key generation in New Hope [i.27] using a centred binomial distribution is almost 10 times faster than key
generation in BCNS [i.28] using a discrete Gaussian, although this could partially be due to improvements in
the polynomial arithmetic.

A.1.2.3 Small distributions

Some LWE and Ring-LWE schemes sample private key and error terms from small distributions such as the uniform
binary distribution over {0,1}, the uniform ternary distribution over −1,0,1!, or the ternary distribution with a fixed
number of nonzero terms. These distributions lead to efficient arithmetic, lower memory requirements and improved
failure rates. Consequently, small distributions have been included in schemes proposed for LWE encryption [i.99],
LWE key exchange [i.26], Ring-LWE identity-based encryption [i.100] and Ring-LWE fully homomorphic encryption
[i.101].

Micciancio and Peikert [i.102] show that, under some assumptions on the number of samples, small distribution LWE
retains a worst-case hardness guarantee. However, the practical security is affected by attacks such as [i.103] and [i.104]
which exploit the small distribution. Consequently, these attacks need to be taken into consideration when choosing
parameters for a LWE or Ring-LWE scheme that uses small distributions.

A.1.2.4 Learning with Rounding

Learning with Rounding (LWR) [i.105] is an alternative method of introducing error terms in LWE by rounding to a
modulus � that is smaller than the LWE modulus �. The resulting error terms are deterministic, rounding reduces the
size of the public keys that need to be transmitted, and some of the arithmetic can be performed with respect to the
smaller modulus. It has been shown [i.105] that, under some assumptions on the number of samples, LWR is at least as
hard as LWE. Lizard [i.106] is a public-key encryption scheme based on both the LWE and LWR problems that uses
small distributions. The spKEX key exchange [i.26] relies on LWR.

A.1.3 Varying �
The general description of the Ring-LWE key exchange in [i.24], and its instantiation in [i.28], uses a fixed public
parameter ". The designers of Frodo [i.25] and New Hope [i.27] raise two related security concerns about using this
approach:

• Fixing the parameter " means that every key exchange will involve the same lattice. Performing a single large
computation on this lattice could then allow any private key to be recovered with a small amount of secondary
work.

• If the fixed choice of " corresponds to a weak instance of the lattice problem then the security of all users of
the system will be affected.

As a consequence, Frodo and New Hope both treat " as part of the initiator's public key and generate a fresh value for
each key exchange. This ensures that every exchange involves a different lattice and the large lattice computation will
need to be repeated for each key recovery attack.

To reduce bandwidth, Frodo and New Hope pseudo-randomly generate " from a small seed so that only the seed needs
to be included in the initiator's public key. However, there are disadvantages to doing this:

• Pseudo-random generation incurs a performance overhead for both the initiator and generator. The
performance estimates for Frodo given in [i.25] suggest that expanding the public matrix " from a seed
accounts for almost half of the time taken to generate a new key pair. It is important to note that these figures
depend on hardware support for AES. When hardware support is not available, pseudo-random generation will
be significantly more expensive.

• Pseudo-randomly generating " from a small seed rather than sampling it uniformly from �� invalidates the
security proof for the key exchange from [i.24]. A modified proof incorporating the pseudo-random generation
is described in [i.25], but this no longer gives a tight security bound and the authors indicate that it might not
hold against quantum adversaries.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 41

In some situations, it might be necessary to find a compromise between generating a fresh " for each key exchange and
using a fixed parameter " in all exchanges. The designers of Frodo [i.25] suggest that " could be cached and reused for
a limited time, but this would only reduce the computational burden for the initiator and not the responder. Another
option used in [i.26] is to have a master public parameter " generated by a trusted party which is then modified by the
initiator in an easily computable way to derive a new public parameter "′ for each exchange. This ensures that there is
sufficient randomness in the choice of "′ while minimizing the computational requirement for both the initiator and the
responder.

A.1.4 Reconciliation mechanisms
The reconciliation mechanism for the LWE key exchange described in clause 6.2 returns the correct shared secret key
when the entries of the error term #� − #� = �� ∙ $� − $� ∙ �� + $′� are less than �/2��� in absolute value. Similarly, the
Ring-LWE reconciliation mechanism in clause 6.3 returns the correct shared secret key when the coefficients of the
error term #� − #� = %� ∙ 	� − %� ∙ 	� + 	′� are less than �/8 in absolute value. Increasing the modulus � or decreasing
the standard deviation & improves the probability that the key exchange will succeed, but reduces the security of the
corresponding lattice problem. Parameter selection therefore involves finding an appropriate balance between the
security and correctness of the scheme.

New Hope [i.27] is able to significantly improve this balance by using a more sophisticated reconciliation mechanism
adapted from ideas given in [i.107]. Each bit of the shared secret key is extracted from four consecutive coefficients of
the intermediate value using Voronoi cell decoding in a four-dimensional lattice. Although more complicated to
implement and analyse, this mechanism returns the correct shared secret key when the sums of the absolute values of
the four consecutive error coefficients are at most 3�/4. This allows the designers of New Hope to reduce the size of
the modulus, and so increase the security of the scheme, while still having an acceptable failure probability.

An approach to improving the Frodo reconciliation mechanism is proposed in [i.108]. It increases the number of check
bits that are sent for each entry of the intermediate matrix #� so that more key bits can be extracted without significantly
affecting the failure probability. This means that smaller dimensional matrices can be used to establish a shared secret
key of the same length leading to reductions in the bandwidth requirements of up to 20 %. This method is used in [i.26].

A.1.5 Key transport
The first proposals for public-key algorithms based on LWE and Ring-LWE focused on encryption schemes rather than
key exchange. It is straightforward to modify the key exchanges in clauses 6.2 and 6.3 to give the corresponding key
transport mechanisms. The present clause describes this for Ring-LWE and the changes for the LWE scheme are
similar.

Key generation for the Ring-LWE key transport is identical to the Ring-LWE key exchange.

1) The initiator generates a private key %� and private noise term 	�, and computes the corresponding public key
�� = %� ∙ " + 	�. The initiator sends their public key �� to the responder.

2) The responder generates a private key %� and private noise term 	�, and computes the corresponding public
key �� = %� ∙ " + 	�.

The responder forms the same intermediate value %� ∙ �� + 	′� as before, but this time it is used to blind the secret key
��. The secret key is viewed as a polynomial with coefficients in {0,1}.

3) The responder generates a second noise term 	′� and computes the value � = %� ∙ �� + 	′� + Floor(�/2) ∙ ��.
The responder sends their public key �� and the blinded secret key � to the initiator.

The initiator can then use their intermediate value %� ∙ �� to unblind the secret key.

4) The responder forms the value ' = � − %� ∙ �� and recovers the secret key as �� = Round(2'/�) mod	2.
The secret keys �� and �� will be the same with reasonable probability.

NOTE: The bandwidth requirements can be reduced by only sending the top few bits of each coefficient of �.
This increases the size of the error in the final decryption step so the parameters will need to be adjusted
to maintain an acceptable decryption failure rate.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 42

A.2 Security considerations

A.2.1 Provable security
Let % ∈ (ℤ/�ℤ)	 be a fixed vector and (be a discrete Gaussian distribution over ℤ. The search LWE problem is to find
% given a sequence of LWE samples of the form ()� , ��), where the)� are chosen uniformly at random from (ℤ/�ℤ)	
and �� = 〈)� , %〉 + 	�	(mod	�) for some 	� chosen from (. The decisional version is to distinguish a sequence of LWE
samples from a sequence of pairs �)� , ��� where the �� are chosen uniformly at random from ℤ/�ℤ. An oracle for the
decisional problem can be used to solve the search problem in a classical algorithm with a polynomial number of steps.

Regev [i.19] showed that there is a quantum reduction to the decisional LWE problem, with appropriate parameters,
from a decisional approximate short vector problem on arbitrary �-dimensional lattices where the approximation factor
depends on the ratio between the modulus � and the standard deviation of (. Brakerski et al [i.109] have subsequently
produced a classical reduction from an approximate decisional short vector problem on arbitrary √�-dimensional
lattices.

The search and decisional Ring-LWE problems are analogous. Lyubashevsky, Peikert and Regev [i.21] have shown that
there is a quantum reduction from the decisional Ring-LWE problem, with appropriate parameters, to a computational
approximate short vector problem on arbitrary ideal lattices in �. No classical reduction is known in this case.

Although the reductions provide some level of confidence in the security of the LWE and Ring-LWE key exchanges,
[i.110] notes that the lack of tightness in the results means that they are not useful when choosing practical parameters.
Instead, parameters for the key exchanges are typically chosen based on estimates of the difficulty of the LWE and
Ring-LWE problems themselves.

Reference [i.24] contains a more detailed discussion of the LWE and Ring-LWE problems.

A.2.2 Passive security
The passive security of the LWE and Ring-LWE key exchanges is largely determined by the difficulty of solving
certain close or short vector problems. There have been a series of attacks [i.111], [i.112], [i.113] and [i.114] against
schemes over polynomial rings that were specifically chosen to be weak, but these are not relevant to Ring-LWE when
used with cyclotomic rings and correctly chosen distributions [i.98].

The two main lattice attacks [i.115] are:

• Decoding attack: Recover the private key by finding a vector in a lattice of the form:

 - = (�, .) ∈ ℤ� × ℤ		|	� ≡ " ∙ .	�mod	��!
 that is sufficiently close to a target vector corresponding to the public key. This can be rephrased as a unique

short vector problem by embedding - into a higher-dimensional lattice that includes the target vector.

• Distinguishing attack: Distinguish the public key from random by finding vectors in the scaled dual lattice:

-� = (�,.) ∈ ℤ� × ℤ		|	� ∙ " ≡ .	(mod	�)!
 that are sufficiently short.

For New Hope [i.27] and Frodo [i.25] the authors determine the block size needed to produce vectors of the required
length using BKZ and then estimate the cost of the attack as the asymptotic cost of lattice sieving or quantum lattice
sieving on a block of that size. This type of analysis is simple to perform and gives a conservative lower bound on the
security of the parameters, but could lead to unnecessarily large parameter sizes.

The concrete security analysis in [i.41] is more complex as it attempts to find the best attack from a wider range of
approaches including small secret variations and non-lattice attacks such as Blum-Kalai-Wasserman [i.116]. Further,
[i.41] also tries to give a more realistic assessment of the overall cost of the attack using state-of-the-art lattice
algorithms. This analysis is likely to produce tighter security estimates, but will be affected more by advances in lattice
techniques.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 43

Table A.1 compares the security estimates produced by the two approaches for the key exchange parameters listed in
clause 6.5. The concrete security estimates were produced by the estimator (version f59326c) from [i.41] using the same
classical and quantum lattice sieving cost models as in [i.27].

Table A.1: Security comparisons for the LWE and Ring-LWE proposed parameters

Scheme � � �
Concrete estimate: Conservative estimate: Failure

probability Classical Quantum Classical Quantum
Frodo 752 215 1,32 170 156 144 130 2-39

spKEX 738 214 2,309 --- --- 141 128 2-42

BCNS 1 024 232 – 1 3,192 98 90 86 78 2-131072

Singh 1 024 40 961 3,192 294 266 248 225 2-91

New Hope 1 024 12 289 2,828 337 306 281 255 2-60

Singh-Chopra 540 41 117 3,192 138 128 114 103 2-87

A.2.3 Active security
Peikert [i.24] modifies the Ring-LWE key exchange so that it includes the Fujisaki-Okamoto transform for active
security. However, as the Fujisaki-Okamoto transform only applies to encryption schemes, [i.24] needs to consider the
encryption scheme induced by the key exchange. The present clause describes a simpler version of this based on the
passively secure key transport from clause A.1.5 and using the refined Fujisaki-Okamoto transform from [i.117].

The initiator's key generation is the same is in the key transport.

1) The initiator generates a private key %� and private noise term 	�, and computes the corresponding public key
�� = %� ∙ " + 	�. The initiator sends their public key �� 	to the responder.

The responder chooses a secret key � and encrypts it using a one-time pad. The seed for the one-time pad is then
encrypted using the Ring-LWE key transport.

2) The responder chooses a random value %		� and encrypts the secret key	� as / = ��0(%		�) ⊕ �.

3) The responder uses �(%		�	‖	/) to generate a private key %� and private noise term 	� via a deterministic
process, and computes the corresponding public key �� = %� ∙ " + 	�.

4) The responder uses �(%		�	‖	/)	to generate a second noise term 	′� via a deterministic process, and forms the
value � = %� ∙ �� + 	′� + Floor(�/2) ∙ %		�. The responder sends their public key ��, the blinded seed � and
the encrypted secret key / to the initiator.

The initiator recovers a putative seed from � and uses it to recreate the responder's side of the key transport.

5) The responder forms the value ' = � − %� ∙ �� and rounds %		�� = Round(2'/�) mod	2.

6) The initiator regenerates values for the responder's private key %� and private noise term 	� from
�(%		��	2	/). The initiator then recomputes the responder's public key �� = %� ∙ " + 	�.

7) The initiator regenerates the responder's second noise term 	′� from �(%		�� 	2	/) and re-blinds the seed as
�� = %� ∙ �� + 	′� + Floor(�/2) ∙ %		��.

If the key transport was performed honestly then the initiator decrypts the session key.

8) The initiator checks that the recomputed public key �� and value �� match the public key �� and value � that
were sent by the responder. If they match then the initiator decrypts the secret key as � = ��0(%		��) ⊕ /.
Otherwise, the initiator treats it as a decryption failure.

NOTE: If the Fujisaki-Okamoto transform is applied to the Ring-LWE key exchange described in clause 6.3 then
the noise term 	′′� used by the responder for the randomized rounding during key extraction and check
field calculation would also need to be deterministically generated from �(%		��	2	/).

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 44

Annex B:
SIDH background and security considerations

B.1 Mathematical background

B.1.1 Isogenies
The present annex provides a brief mathematical background on isogenies. Further details can be found in the
references [i.45], [i.46] and [i.118].

Let $ and $′ be two elliptic curves over a finite field GF(�) of order �. An isogeny 3 is a map from $ to $′ of the form:

3��, .� = 	 4��(�, .)
��(�, .) ,

��(�, .)
��(�, .)5,

for some polynomials f�, f�, g� and g� in two variables, such that 3�∞�= ∞ where ∞ denotes the identity element on the
elliptic curve. Equivalently, an isogeny is a group homomorphism of the above form. In particular, given a point)6 +
�7, where 6,7 ∈ $ and), � ∈ GF(�):

3�)6 + �7� = 3�)6� + 3��7� =)3�6� + �3�7� ∈ $′.
Two elliptic curves are said to be isogenous if there is an isogeny between them. The degree of the isogeny is its degree
as a rational function. Given an isogeny 3:$ ⟶ $′ of degree �, there exists another isogeny 38 :$′ ⟶ $ also of degree
� such that 3 ∘ 38 = 38 ∘ 3 = [�]. where [�] is the map corresponding to multiplication by �. It follows that isogenies
give an equivalence relation between elliptic curves. The isogeny 38 is called the dual isogeny of 3.

For any natural number �, let $��� denote the �-torsion subgroup:

$��� = {6 ∈ $9GF���::::::::; ∶ 	�6 = 	∞}.

In other words, $��� is the kernel of the multiplication by � map over the algebraic closure of GF(�). The group $��� is
isomorphic to (ℤ/�ℤ)� whenever � and � are relatively prime [i.118]. Accordingly, $��� has a basis consisting of two
points, referred to as the �-torsion basis of $.

The endomorphism ring End($) is defined to be the set of all isogenies from $ to itself defined over the algebraic
closure GF(�). The endomorphism ring is a ring under the addition of points and composition of functions. If the
dimension of End($) over ℤ is 2 then the elliptic curve is said to be ordinary; otherwise the dimension is 4 and the
elliptic curve is said to be supersingular. Two isogenous curves are either both ordinary or both supersingular. All
elliptic curves used in clause 7 are supersingular. One important property to note is that the endomorphism ring for
supersingular elliptic curves is non-commutative.

Evaluating isogenies directly is inefficient. For efficient implementation, an isogeny can be represented by its kernel:

ker�3� = <6 ∈ $9GF���::::::::; ∶ 3�6� = 	∞=
and its kernel can be used to evaluate it. Let 〈>,?, … 〉 denote the group generated by >,?, … !. For all of the isogenies
considered in clause 7, the kernel will be generated by a single elliptic curve point �. Given an isogeny 3:$ ⟶ $′ with
kernel ker�3� = 〈�〉, the image curve $′ can be expressed as $/〈�〉. Consequently, the isogenies in clause 7
correspond directly to elliptic curve points. References [i.46] and [i.47] describe algorithms to evaluate isogenies given
the corresponding kernel point.

B.1.2 Parameter generation
The public parameters of the SIDH key exchange are the prime �, the supersingular elliptic curve $, and the two pairs
of auxiliary points 6� ,7�! and 6� ,7�!. These can be generated randomly by a trusted third party during the setup of
the scheme.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 45

This prime � has the form � = @��� 	@���� ± 1, where @� and @� are small primes and � is an optional cofactor. Typically,
@� and @� are chosen to be the smallest prime values possible; that is, 2 and 3. The integers 	� , 	� are chosen so that @���
and @��� both have a bit length of approximately �/2 bits where � is the desired bit length for �. Different values for the
cofactor � can then be tested until one is found for which either � = @��� 	@���� − 1 or � = @��� 	@���� + 1 is prime.

A method for constructing a specific supersingular curve $� over GF(��) is described in [i.119]. When � ≡ 3	(mod	4),
this gives the curve .� = �� + 1.	A random supersingular curve $ over GF(��) can be generated using a random walk
on the isogeny graph starting from $�.	
To generate the auxiliary points 6� ,7�!, first randomly choose a point 6� ∈ $ and compute 6 = (@����)�6′ ∈ $[@���]. If
6 has order @��� then set 6� = 6; otherwise, try again with a different 6�. Next, randomly choose a point 7� ∈ $ and
compute 7 = (@����)�7′ ∈ $[@���]. If 7 has order @��� then set 7� = 7; otherwise, try again with a different 7′. Finally,
if the result of the Weil pairing 	(6� ,7�) also has order @��� then 6� and 7� generate the torsion subgroup $[@���] so can
be used as the auxiliary points; otherwise, try again with a different 7′.
The process for generating the auxiliary points 6� ,7�! is analogous.

B.1.3 Public key compression
Let � be the bit length of the prime �. An elliptic curve of the form .� = �� +)� + � over GF(��) is represented by a
pair of values), � ∈ GF(��) which take 4� bits. An elliptic curve point 6 = (�, .) also corresponds to a pair of values
in GF(��). However, there are only two possible values of . for each �-coordinate so it is possible to represent the point
with only 2� + 1 bits. Consequently, a public key can be represented using 8� + 2 bits as it consists of a curve and two
points.

In [i.120], the authors observe that for the SIDH key exchange either of the two possible . values for the points in the
public key can be used in the computation of the shared secret key. They further suggest a method of constructing a
canonical choice of curve from a A-invariant and propose representing points on the curve as linear combinations of a
canonical basis. These techniques halve the size of a public key as it can now be represented by a A-invariant, which
takes � bits; four coefficients, each of which takes �/2 bits; and a single-bit twist indicator. However, the reduction in
the key size comes at a large computational cost.

A more recent work [i.53] presents an alternative implementation of key compression which has even smaller key sizes
and is much faster computationally. By normalizing the two elliptic curve points that are part of the public key, it is
possible to represent the pair with only 7�/2 bits which makes the size of the public 7�/2 + 1 bits.

B.2 Security

B.2.1 Provable security
The SIDH key exchange depends on the difficulty of certain isogeny problems. The most general form of the
computational isogeny problem is the following: given a pair of values A, A� ∈ GF��� find an isogeny 3:$ → $′, if
exists, for elliptic curves $ and $′ over GF(�) where A�$� = A and A�$�� = A.	However, the use of auxiliary points
means that the isogeny problems underlying the SIDH key exchange are more specialized.

Let $ be a supersingular elliptic curve with pairs of auxiliary points 6� ,7�! and 6� ,7�! as in clause 7.2.2. Further, let
3�:$ ⟶ $� be an isogeny of degree @��� . The computational supersingular isogeny problem is to find a generator �� for
the kernel of 3� given the curve $� and the images 3��6��,3�(7�) of the auxiliary points 6� ,7� . Note that if the
images 3��6��,3�(7�) are also known then a generator �� = ��6� + ��7� can by recovered by finding ��,�� such
that ��3��6�� + ��	3�(7�) = ∞ via a discrete logarithm problem in a group of smooth order @��� .

The decisional version of this problem is to determine whether there exists an isogeny 3�:$ ⟶ $� of degree @��� such
that 3��6�� = 6′� and 3�(7�) = 7′� given a curve $� and a pair of points 6′� ,7′� ∈ $�[@���]. An oracle for the
decisional problem can be used to solve the computational problem by recovering the isogeny path in a polynomial
number of steps [i.49].

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 46

Let 3�:$ ⟶ $� be an isogeny of degree @��� with kernel generated by �� = ��6� + ��7� and 3�:$ ⟶ $� be an
isogeny of degree @��� with kernel generated by �� = ��6� + ��7� . The computational supersingular Diffie-Hellman
problem is to find the A-invariant of the curve $/〈��,��〉 ≅ $�/〈3�(��)〉 ≅ $�/〈3�(��)〉 given the curves $� ,$� and
the images 3��6��,3�(7�) ∈ $�[@���] and 3��6��,3�(7�) ∈ $�[@���].
References [i.46] and [i.49] contain further discussion of these assumptions.

B.2.2 Passive security
As described in clause B.2.1, the general hard problem is to find an isogeny between two elliptic curves that are known
to be isogenous. When the curves are ordinary, their endomorphism ring is commutative and so the quantum algorithm
for finding a hidden shift subgroup can be used to give a subexponential attack [i.121]. For supersingular curves, the
endomorphism ring is no longer commutative and the hidden shift subgroup problem no longer applies. The fastest
known algorithm to recover an isogeny between supersingular curves over GF(��) is a quantum meet-in-the-middle
attack which has complexity B(C��). Similarly, the fastest known classical algorithm to recover a supersingular isogeny

is a classical meet-in-the-middle attack which has complexity B(C��). Consequently, an �-bit prime � provides
approximately �/6 bits of quantum security and �/4 bits of classical security [i.46].

The choice of the elliptic curve $ in the public parameters does not affect the security of the scheme because isogenies
between elliptic curves form a Ramanujan expander graph [i.46], so from any starting curve it is possible to move to a
random curve in the isogeny graph with roughly equal probability using only a small number of isogeny steps. There
are more efficient quantum [i.122] and classical [i.123] algorithms for constructing isogenies between supersingular
curves defined over GF���. These form a negligible fraction of the curves in the isogeny graph so the algorithms do not
pose a threat to SIDH.

The choice of auxiliary points does not affect the security of the scheme because it is straightforward to switch between
any pair of generators for the torsion subgroup using a simple linear transformation. A recent paper by Petit [i.124] does
describe a polynomial-time algorithm to reconstruct an isogeny between supersingular curves over GF(��) using the
images of the auxiliary points under the isogeny. However, the algorithm requires one of the torsion subgroups to be
significantly larger than the other. Consequently, it does not apply when the parameters are chosen so that the two
torsion subgroups are approximately the same size, as in clause 7.2.2.

B.2.3 Active security
Galbraith et al [i.48] suggest using the variant of the Fujisaki-Okamoto transform described in [i.50] to provide active
security. This applies directly to the key exchange without first needing to convert it into an encryption scheme, but it
does not have a proof of security.

The initiator's key generation is the same as in the original SIDH key exchange.

1) The initiator generates a point �� ∈ 〈6� ,7�〉, uses this to compute a private isogeny 3�:$ → $� = $/〈��〉 and
then calculates the images 3�(6�) and 3��7��.	The initiator sends the curve $� and images 3�(6�), 3�(7�)
to the responder.

The responder generates their key pair from a random seed. The seed is then encrypted using the shared value derived
from the key exchange.

2) The responder chooses a random value %		� and uses this to generate a point �� ∈ 〈6� ,7�〉 via a deterministic
process. The responder computes a private isogeny 3�:$ → $� = $/〈��〉 and then calculates the images
3�(6�) and 3��7��.

3) The responder uses the initiator's public points 3�(6�), 3�(7�) to recover the image 3����� of �� under the
initiator's private isogeny 3�. The responder computes the curve $�� = $�/〈3�����〉 and derives the shared
value � from the A-invariant of $��.

4) The responder derives a session key � = ��0�(�) from the shared value �.

5) The responder encrypts the random value as / = ��0�(�) ⊕ %		�. The responder sends their curve $�,
images 3�(6�), 3�(7�), and encrypted seed / to the initiator.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 47

The initiator completes the key exchange to recover a putative seed and uses it to recreate the responder's side of the key
transport.

6) The initiator uses the responder's public points 3�(6�) and 3�(7�) to recover the image 3����� of �� under
the responder's private isogeny 3�. The initiator computes the curve $�� = $�/〈3�����〉 and derives the
shared value �′ key from the A-invariant of $�� .

7) The initiator recovers %		�′ = ��0�(�′) ⊕ / and uses this to regenerate the responder's point ��
� , isogeny

3�
� :$ → $�� = $/〈��

� 〉, and images 3�
� (6�) and 3�

� �7��.

If the key exchange was performed honestly then the initiator derives the session key.

8) The initiator checks that the recomputed curve $�� and images 3�
� (6�), 3�

� �7�� match the curve $� and images
3�(6�), 3�(7�) sent by the responder. If they match then the initiator derives the session key � = ��0�����.
Otherwise, the initiator treats it as a key exchange failure.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 48

Annex C:
Open Quantum-Safe benchmarks

C.1 Open Quantum-Safe
The Open Quantum-Safe project [i.125] is developing a library of quantum-safe primitives together with a common
testing and benchmarking framework. The primitives currently integrated into the library include examples of the key
exchanges considered in clauses 6, 7 and 8:

• Ring-LWE key exchanges (BCNS [i.28] and New Hope [i.27] and [i.126]);

• LWE key exchange (Frodo [i.25]);

• Isogeny-based key exchange (Jao-De Feo [i.46] and SIDH [i.47]);

• Niederreiter key transport (McBits [i.66]); and

• NTRU key transport.

The present annex compares the performance of the various key exchanges using benchmarks produced by the Open
Quantum-Safe library on three different hardware platforms:

• Desktop with a 64-bit AMD A10-6700 quad-core processor operating at 3,7 GHz;

• Laptop with a 64-bit Intel® Pentium® T4400 dual-core processor operating at 2,2 GHz; and

• Single board computer with a 32-bit ARM1176TM core operating at 700 MHz.

The performance estimates give the median time to perform the initiator's key generation; the responder's key
generation or encryption; and the initiator's reconciliation or decryption. The benchmarks were taken when the
processors were idle except for standard operating system background processes.

C.2 Benchmarks

C.2.1 Performance on a 64-bit desktop processor
Table C.1 gives performance estimates (in milliseconds) for the key exchanges on a 64-bit AMD A10-6700 quad-core
desktop processor operating at 3,7 GHz and with Turbo Core disabled. The host operating system was Microsoft®
Windows® 8.1, but the library was built using gcc version 5.4.0 in an Ubuntu® 16.04 virtual machine managed by
Oracle® VirtualBoxTM 5.0.32. The compiler optimization flag was set to -O2 and the library was configured to allow the
use of AVX and AES-NI instructions. AVX2 instructions are not supported by the A10-6700 processor.

Table C.1: Performance on a 64-bit desktop processor

Scheme
Performance:

Notes
Initiator (Start) Responder Initiator (End)

New Hope 0,092 ms 0,165 ms 0,034 ms [i.126]
Frodo 5,95 ms 6,05 ms 0,137 ms [i.25]
SIDH 22,5 ms 50,3 ms 21,3 ms [i.47]

McBits 206 ms 0,083 ms 0,204 ms [i.66]
NTRU 2,00 ms 0,282 ms 0,143 ms [i.78]

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 49

C.2.2 Performance on a 64-bit laptop processor
Table C.2 gives performance estimates (in milliseconds) for the key exchanges on a 64-bit Intel® Pentium® T4400 dual-
core laptop processor operating at 2,2 GHz. The operating system was Ubuntu® 16.04 and the library was built using
gcc version 5.4.0. The compiler optimization flag was set to -O2 and the library was configured to allow the use of
AVX instructions. AVX2 and AES-NI instructions are not supported by the Pentium® T4400 processor.

Table C.2: Performance on a 64-bit laptop processor

Scheme
Performance:

Notes
Initiator (Start) Responder Initiator (End)

New Hope 0,134 ms 0,237 ms 0,044 ms [i.126]
Frodo 69,8 ms 71,5 ms 0,232 ms [i.25]
SIDH 35,1 ms 78,3 ms 33,2 ms [i.47]

McBits 275 ms 0,136 ms 0,299 ms [i.66]
NTRU 3,04 ms 0,383 ms 0,244 ms [i.78]

C.2.3 Performance on a 32-bit embedded processor
Table C.3 gives performance estimates (in milliseconds) for the key exchanges on a single board computer containing a
32-bit ARM1176TM core operating at 700 MHz. The operating system was Debian® 7.11 and the library was built using
gcc version 4.6.3. The compiler optimization flag was set to -O2. The AVX, AVX2 and AES-NI instructions are not
supported by the ARM1176TM core.

Table C.3: Performance on a 32-bit embedded processor

Scheme
Performance:

Notes
Initiator (Start) Responder Initiator (End)

New Hope 1,60 ms 2,68 ms 0,411 ms [i.126]
Frodo 858 ms 880 ms 2,12 ms [i.25]
SIDH 3 270 ms 7 340 ms 3 090 ms [i.47]

McBits 10 300 ms 2,15 ms 6,32 ms [i.66]
NTRU 33,2 ms 5,14 ms 2,49 ms [i.78]

C.3 Discussion
It is clear from tables C.2 and C.3 that removing support for AVX instructions significantly reduces the performance of
SIDH and McBits key generation. New Hope, Frodo and NTRU are all approximately 10 times slower on the 32-bit
ARM core than on the 64-bit Intel® processor whereas McBits key generation is almost 40 times slower and SIDH is
nearly 100 times slower.

Similarly, tables C.1 and C.2 show a significant drop in the performance of key generation for Frodo when AES-NI
instructions are not supported. Although the performance of the other algorithms on the 64-bit Intel® processor is close
to their performance on the 64-bit AMD processor, key generation for Frodo is over 10 times slower. AES is only used
during the pseudo-random generation of the public matrix A and if this is replaced by a fixed public matrix then the
performance of Frodo is not affected to the same extent.

ETSI

ETSI TR 103 570 V1.1.1 (2017-10) 50

History

Document history

V1.1.1 October 2017 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Abbreviations
	4 Quantum-safe key exchanges
	4.1 Introduction
	4.2 Use cases
	4.2.1 General comments
	4.2.2 Network security
	4.2.3 Internet of Things

	4.3 Candidate primitives

	5 Implementation considerations
	5.1 Introduction
	5.2 Active security
	5.2.1 Invalid key attacks
	5.2.2 Key validation
	5.2.3 Performance impact

	5.3 Side-channel protection
	5.3.1 Side-channel vulnerabilities
	5.3.2 Side-channel mitigations
	5.3.3 Performance impact

	6 Learning with Errors
	6.1 Introduction
	6.2 LWE key exchange
	6.2.1 Overview
	6.2.2 Public parameters
	6.2.3 Key generation
	6.2.4 Key extraction
	6.2.5 Reconciliation

	6.3 Ring-LWE key exchange
	6.3.1 Overview
	6.3.2 Public parameters
	6.3.3 Key generation
	6.3.4 Key extraction
	6.3.5 Reconciliation

	6.4 Implementation considerations
	6.4.1 Active security
	6.4.2 Side-channel protection

	6.5 Parameter selection
	6.5.1 LWE proposed parameters
	6.5.2 Ring-LWE proposed parameters
	6.5.3 Security estimates

	6.6 Performance
	6.6.1 Performance on a 64-bit processor
	6.6.2 Performance on a 32-bit embedded processor
	6.6.3 Performance on 32-bit microcontrollers

	6.7 Summary

	7 Supersingular isogenies
	7.1 Introduction
	7.2 SIDH key exchange
	7.2.1 Overview
	7.2.2 Public parameters
	7.2.3 Key generation
	7.2.4 Key exchange

	7.3 Implementation considerations
	7.3.1 Static key exchanges
	7.3.2 Side-channel protection

	7.4 Parameter selection
	7.4.1 Proposed parameters
	7.4.2 Security estimates

	7.5 Performance
	7.5.1 Performance on a 64-bit desktop processor
	7.5.2 Performance on a 64-bit embedded processor
	7.5.3 Performance on a 32-bit embedded processor

	7.6 Summary

	8 Key exchanges from key transport mechanisms
	8.1 General construction
	8.2 Niederreiter
	8.2.1 Introduction
	8.2.2 Niederreiter key exchange
	8.2.2.1 Overview
	8.2.2.2 Public parameters
	8.2.2.3 Key generation
	8.2.2.4 Decryption

	8.2.3 Implementation considerations
	8.2.3.1 Active attacks
	8.2.3.2 Side-channel attacks

	8.2.4 Parameter selection
	8.2.4.1 Proposed parameters
	8.2.4.2 Security estimates

	8.2.5 Performance
	8.2.5.1 Performance on a 64-bit server processor
	8.2.5.2 Performance on a 64-bit desktop processor
	8.2.5.3 Performance on an 8-bit microcontroller

	8.2.6 Summary

	8.3 NTRU
	8.3.1 Introduction
	8.3.2 NTRU key exchange
	8.3.2.1 Overview
	8.3.2.2 Public parameters
	8.3.2.3 Decryption

	8.3.3 Implementation considerations
	8.3.3.1 Static key exchange
	8.3.3.2 Side channel attacks

	8.3.4 Parameter selection
	8.3.4.1 Proposed parameters
	8.3.4.2 Security estimates

	8.3.5 Performance
	8.3.5.1 Performance on a 64-bit desktop processor
	8.3.5.2 Performance on a 32-bit embedded processor
	8.3.5.3 Performance on a 32-bit microcontroller

	8.3.6 Summary

	9 Conclusions
	Annex A: LWE design and security considerations
	A.1 LWE and Ring-LWE variants
	A.1.1 Rings
	A.1.2 Distributions
	A.1.2.1 Discrete Gaussians
	A.1.2.2 Approximate Gaussians
	A.1.2.3 Small distributions
	A.1.2.4 Learning with Rounding

	A.1.3 Varying A
	A.1.4 Reconciliation mechanisms
	A.1.5 Key transport

	A.2 Security considerations
	A.2.1 Provable security
	A.2.2 Passive security
	A.2.3 Active security

	Annex B: SIDH background and security considerations
	B.1 Mathematical background
	B.1.1 Isogenies
	B.1.2 Parameter generation
	B.1.3 Public key compression

	B.2 Security
	B.2.1 Provable security
	B.2.2 Passive security
	B.2.3 Active security

	Annex C: Open Quantum-Safe benchmarks
	C.1 Open Quantum-Safe
	C.2 Benchmarks
	C.2.1 Performance on a 64-bit desktop processor
	C.2.2 Performance on a 64-bit laptop processor
	C.2.3 Performance on a 32-bit embedded processor

	C.3 Discussion

	History

